НАУЧНЫЕ СООБЩЕНИЯ

Самарская Лука: проблемы региональной и глобальной экологии. 2010. - T. 19, № 1. - C. 78-87.

УДК 504.06(470.43)

ПРИРОДНЫЕ УСЛОВИЯ ФОРМИРОВАНИЯ И ИЗМЕНЕНИЯ СТОКА РЕКИ СОК

© 2010 ¹Л.Ф. Ляховская, ²Е.Е. Сергейчук*

¹Поволжская государственная социально-гуманитарная академия, г. Самара (Россия)

²Приволжское территориальное управление по гидрометеорологии и мониторингу окружающей среды, г. Самара

Поступила в редакцию 12 мая 2009 г.

В статье представлены результаты исследования влияния изменения климатических условий в Самарской области в конце XX века на сток реки Сок.

Ключевые слова: река Сок, географическая обстановка, изменение климата, изменение стока.

Реки Самарской области характеризуются большим разнообразием в физикогеографической обстановке, гидрологическом режиме, динамичности и водности. Необходимость их глубокого и всестороннего изучения вряд ли может вызвать сомнения. В условиях антропогенного воздействия на природу происходят изменения, которые необходимо предотвращать, а значит изучать. Объектом для исследования изменений гидрологических условий в Самарской области выбрана река Сок, в меньшей степени подверженная хозяйственной деятельности и имеющая относительно длинный ряд наблюдений с 1936 г. Поводом послужили результаты исследования изменений климатических характеристик нашего региона (Ляховская, 2006), а реки являются продуктом климата, значит, выявленные изменения климатических словий должны непременно отразиться на стоке рек.

Река Сок берёт начало на западном склоне Бугульминско-Белебеевской возвышенности в 0,5 км к югу от села Курско-Васильевки Сок-Кармалинского района, Оренбургской области и впадает в Саратовское водохранилище слева, в 1,5 км к юговостоку от села Большая Царевщина. Длина реки 363 км, площадь водосбора 11700 км², общее падение 209 м, средний уклон 0,6‰ (рис. 1), средняя высота водосбора 140 м.

Гидрографическая сеть состоит из множества притоков реки Сок с длиной менее 40 км, а наиболее крупными являются реки Кондурча, Сургут Тростянка. Все притоки имеют постоянный сток в течение года.

Область формирования стока реки Сок относится к Высокому Заволжью, представляющего собой возвышенную волнистую равнину, пересечённую глубокими речными долинами. Поверхность территории постепенно понижается с востока на запад,

 $^{^*}$ Ляховская Людмила Федоровна, кандидат географических наук, заведующая кафедрой географии и методики ее преподавания; Сергейчук Евгений Евгеньевич, инженер.

в этом же направлении течет река Сок. Река на ряде участков своего течения прокладывает долину вдоль флексур, размывая в правых коренных берегах их поднятые крылья. Этим в основном обуславливаются более высокие и крутые правые склоны речной долины.

Особенно высоки и обрывисты склоны правобережья Сока, где выделяются так называемые Сокские яры.

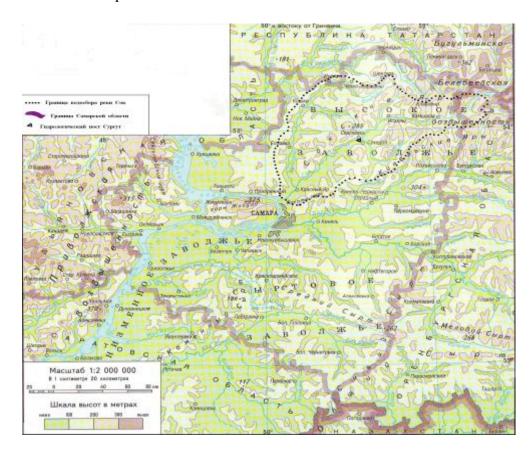


Рис. 1. Водосбор реки Сок на физической карте Самарской области

Бассейн реки представляет волнистую равнину, сильно расчленённую долинами притоков, балками и глубокими оврагами, между которыми расположены высокие и узкие кряжи-увалы с сильно покатыми и часто террасированными склонами. Уклон реки изменяется от истока до устья в пределах 6% - 0,1%, как показано на рис. 2.

В бассейне наблюдается проявление карста: карстовые провальные воронки и котловины, возникшие в результате выщелачивания гипсов нижнепермского возраста. Поверхность водосбора сложена в основном суглинистыми и супесчаными грунтами, а правобережье в большей степени покрыто лесом. Лесистость бассейна составляет 15%.

Долина реки широкая, хорошо выражена, асимметричная. Ширина её изменяется от 0,5 км в верховье до 4-6 км в устьевой части. Самая широкая часть долины (8 км) находится у с. Нижняя Солонцовка (42-й км). Почти на всём протяжении реки правый склон долины имеет высоту 30-50 м с уклоном 15-30°, сильно рассечён долинами притоков и глубокими оврагами. Левый склон преимущественно низкий (10-20 м) и пологий (2-3°) (рис. 3), местами, незаметно сливающийся с прилегающей местностью и лишь на участке 13-й км устье повышается до 30-80 м при крутизне 60-80°. На всем протяжении реки склоны открытые, сложены глинистыми грунтами.

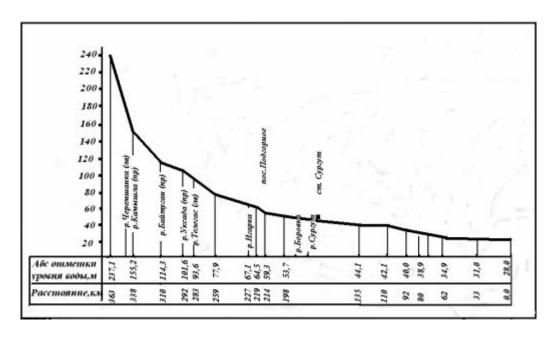


Рис. 2. Продольный профиль реки Сок

Пойма реки на всем протяжении двухсторонняя, луговая. Преобладающая ширина её 1-2 км. Наибольшей ширины (4-5 км) пойма достигает на участках между 31-ым и 13-ым км. Поверхность поймы пересечена озёрами и старицами, местами заболочена, сложена суглинистыми грунтами. В многоводные годы пойма заполняется на глубину 1,5-2,5 м, в обычные — на 0,5-1,5 м сроком на 23-38 дней.

Русло реки сильно извилистое, ниже села Тархановка разделяется на рукава. Преобладающая ширина русла реки 25-35 м, наибольшая 100 м (в устье). Глубина реки изменяется в широких пределах: от 0,2-0,5 м в истоке до 2-5 м на остальном протяжении. Наиболее часто встречаются глубины порядка 2-4 м. Скорость течения в межень на значительном протяжении реки характеризуются величиной 0,20-0,40 м/сек. Берега русла в большей степени крутые или обрывистые, с преобладающей высотой 2-3 м. Грунт берегов песчаный в верховье суглинистый. Дно реки ровное, преимущественно песчаное, местами каменистое.

Согласно геоморфологической карте Самарской области, долина р. Сока кроме пойменной террасы, имеет первую (хвалынскую), вторую (хазарскую) и третью (бакинскую) надпойменные террасы. Поймы или пойменные террасы подразделяются на ступени. Наиболее низкая и молодая из них называется формирующейся или зачаточной поймой, следующая по высоте и возрасту — типичной и наиболее высокая — старой поймой.

Весьма важным фактором физико-географической среды поймы, да и всей долины являются грунтовые воды. Последние там выполняют три основные функции: формирование меженного стока реки в течение всего года, увлажнение почво-грунтов после спада полых вод и непосредственное влияние на химизм воды. Река протекает среди территорий с высокой проницаемостью грунтов, что создаёт благоприятные условия для пополнения грунтовых вод за счёт атмосферных осадков.

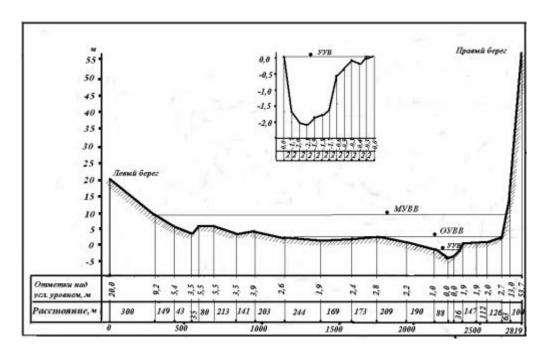


Рис. 3. Поперечный профиль долины и русла р. Сока у с. Боровка

Большое влияние на количество осадков оказывает высота места, форма рельефа, наличие лесных массивов, водоемов и речных долин. В течение года, по данным метеорологических станций в бассейне реки Сок Челно-Вершины и Клявлино, минимум осадков — в феврале и марте; максимум — в июне (рис. 4). В отдельные годы, как минимум, так и максимум осадков могут отмечаться в другие месяцы. Например, в Клявлино в июне 1977г. выпало 179 мм, а в ноябре 1990 — 167 мм.

Количество осадков за холодный период (с ноября по март) меньше (\approx 30%), а за теплый период (с апреля по октябрь) выпадает - больше (70%). В среднем на территорию водосбора реки Сок за год выпадает 450-550 мм осадков.

Ливневые осадки на территории области достигают максимума в теплую половину года, что связано с прогревом воздуха над континентом, увеличением испарения с подстилающей поверхности, большими вертикальными градиентами температуры воздуха, а также прохождением холодных фронтов. За теплый период года в среднем наблюдается 4-6 ливней. Рост интенсивности ливней отмечается вблизи крупных рек, в условиях резко неровного возвышенного рельефа.

Средняя интенсивность ливней близка к 1 мм/мин., максимальная — 6 мм/мин. Средние суммы осадков при ливнях могут составлять от 20 мм до 90 мм. В среднем большее число ливней в июле, за ним следует август, май, июнь, сентябрь, октябрь, апрель. Характерно, что в июне заметно снижается повторяемость ливней по сравнению с маем, но в июле резко возрастает. В июле отмечается и более высокая средняя интенсивность ливневых дождей.

Общая продолжительность выпадения осадков за год колеблется по территории от 1300-1500 часов на северо-востоке. В годовом ходе наибольшая суммарная продолжительность осадков наблюдается в декабре – январе, минимальная в июне – июле.

Средняя дата появления снежного покрова приходится на третью декаду октября. Устойчивый снежный покров появляется обычно через 20-25 дней после выпадения первого снега. Во второй декаде ноября она равна 3-6 см. Наиболее интенсивный рост снежного покрова происходит от ноября к январю.

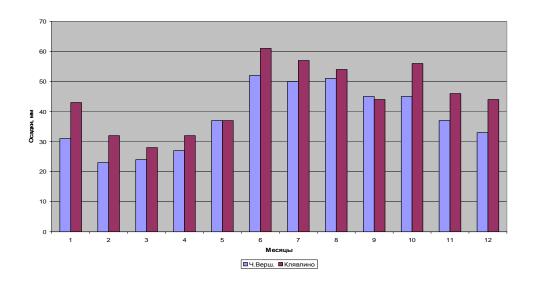


Рис. 4. Внутригодовое распределение осадков в бассейне реки Сок

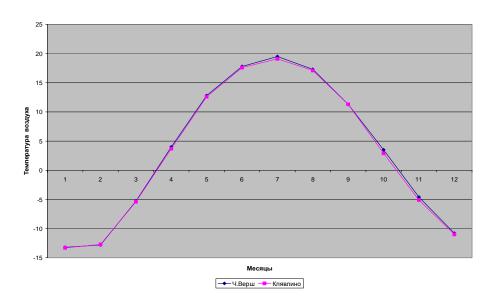


Рис. 5. Годовой ход температуры воздуха в бассейне реки Сок

Своей максимальной величины снежный покров достигает в первой — второй декадах марта, средняя многолетняя высота снежного покрова в это время составляет на севере области 50 см. Плотность снежного покрова, как и высота, увеличивается в течение зимы от 0.17-0.22 в начале ее до 0.30-0.35 к концу при снеготаянии.

Как правило, к концу второй декады апреля территория области освобождается от снега. Продолжительность залегания снежного покрова на северо-востоке составляет 150-160 дней.

Термический режим воздуха формируется под влиянием климатообразующих факторов разного масштаба. К макромасштабным факторам следует относить атмосферную циркуляцию, радиационный режим и подстилающую поверхность. Так же на термический режим оказывают влияние местные условия: мезорельеф и микрорельеф, растительность, почва, непосредственная близость водоемов.

Интенсивность изменения температуры воздуха, повышение с февраля по июль и спад с июля по декабрь, в течение года в среднем одинаковая (рис. 5): минимум

отмечается в январе (-13,3°C), максимум в июле (19,5°C). В годы с активной циклонической деятельностью зимы бывают более снежные и теплые. Под влиянием теплых масс воздуха со Средиземного моря и Атлантики температура повышается до плюсовых значений даже в самые холодные месяцы, достигая 2° - 4° C в бассейне реки Сок. Минимум температуры воздуха может опускаться до -46° С.

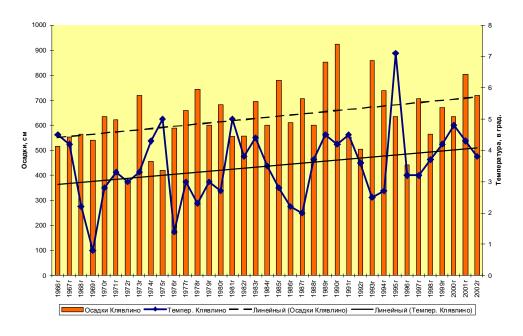


Рис. 6. Тенденции изменения годовой суммы осадков и температуры воздуха в бассейне реки Сок (мс Клявлино)

Летом погода формируется в большей части за счет трансформации воздушных масс в антициклонах. Этому способствует большой приток солнечной энергии. Циклоническая деятельность в летнее время уменьшается, особенно в восточной части Самарской области. На температуры летом оказывают влияние подстилающая поверхность и условия рельефа. По этой причине распределение всех температурных характеристик имеет некоторое отклонение от зонального. Примером может служить распределение среднемесячной температуры июля, где наиболее теплыми районами являются долины рек, а более холодными возвышенности (Бугульминско-Белебеевская). Максимальная температура воздуха может повышаться до 42°C.

Исследования тенденций изменения среднегодовой температуры воздуха и годовой суммы осадков выявили их устойчивое повышение: температура воздуха на станции Клявлино повысилась в конце XX столетия на 1,2°C, а количество осадков увеличилось на 40% (или 190 мм) соответственно (рис. 6). Причем повышение климатических характеристик более четко прослеживается в холодный период.

Режим стока реки напрямую зависит от режима температуры воздуха, количества осадков и подземного притока. Для исследования режима стока и возможного его изменения в реке Сок использовался период наблюдений в гидрометрическом створе Сургут за 71 год.

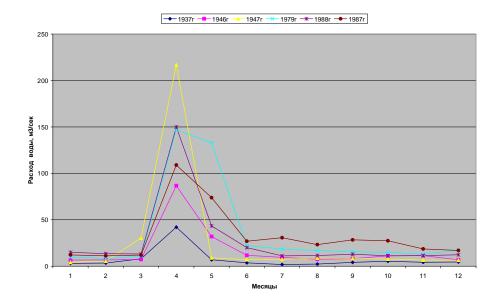


Рис. 8. Гидрографы стока реки Сок в створе Сургут



Рис. 9. Измеренные расходы воды в р. Сок в июле 1969 года

Сток реки Сок формируется преимущественно за счет таяния снежного покрова: 59% годового стока проходит за два месяца половодья. На рисунке 8 представлены гидрографы стока в разные по водности годы.

По данным наблюдений на водомерных постах реки Сок максимальное превышение уровня весеннего половодья над средней меженью составило в 1984 г. у ст. Сургут 3,5 м, у пос. Гундоревка – 4,8 м. Подъём уровня начинается в начале апреля, проходит с наибольшей интенсивностью 1,5 м/сут., достигая максимальной величины в середине апреля. Средняя продолжительность половодья у ст. Сургут 31 день, у с. Гундоревка 37 дней. В период половодья частично затопляются селения Соковка, Боровка, Сергиевск, Березняки, Красный Яр и пос. Ново-Обошинский.

Устье реки находится в зоне подпора от Саратовского водохранилища. Весенний ледоход продолжается 2-3 дня, максимум 16 дней. На крутых изгибах реки образуются заторы льда. Река замерзает в середине ноября. Сала и осеннего ледохода не быва-

ет. Зимняя межень устойчивая. Самые низкие зимние уровни наблюдаются в начале ледоставного периода. Лед ровный, толщиной до 115 см. Средняя продолжительность ледостава 128-150 дней.

Летняя межень устанавливается в начале мая, является устойчивой, дождевые паводки бывают редко. Минимальные летние уровни наблюдаются в августе. Расходы воды, измеренные в межень в нескольких пунктах реки при её обследовании в течение пяти дней от истока до устья, показали интенсивное их увеличение, особенно в среднем и нижнем течении (рис.9, табл.1).

Таблица 1 Измеренные расходы воды р. Сока летом 1969 г.

		Расход	Скорость течения м/сек	
Место измерения, км от устья	Дата	воды, м³/сек	средняя	наибольшая
с. Наумовка, 338 км	2.07.	0,39	0,49	0,61
с. Якт-Куль, 328 км	2.07.	1,67	1,16	1,65
с. Камышла, 297 км	2.07.	2,26	0,79	1,09
с. Новое Ермаково, 269 км	2.07.	3,11	0,66	1,21
с. Исаклы, 227 км	1.07.	4,68	0,89	1,06
с. Боровка, 197 км	8.07.	8,79	0,38	0,41
с. Большая Чеснаковка, 110 км	3.07.	9,29	0,29	0,42
с. Красный Яр, 32 км	3.07.	10,0	0,26	0,32

Минерализация воды реки Сок на всём протяжении (от ст. Сургут до устья) в период весеннего половодья изменяется от 200 до 500 мг/л. В ионном составе воды наблюдается попеременное преобладание гидрокарбонатных (19-27 % экв. НСОЗ) или сульфатных (18-28 % экв. SO4) ионов и ионов кальция (27-36 % экв. Са"), вода мягкая или умеренно жесткая, хорошая питьевая. В периоды летней и зимней межени минерализация воды (на участке Сургут-Гундоревка) значительно увеличивается и составляет 1,00-1,60 г/л. В составе растворённых минеральных веществ чаще всего хорошо выражено преобладание сульфатных ионов (28-36 % экв. SO4") и ионов кальция, вода очень жесткая, допустимая для питья. В приустьевом участке, со времени образования Саратовского водохранилища, минерализация воды летом значительно ниже, чем в верховье и может составлять 400 мг/л.

Для водоснабжения населенных пунктов и удовлетворения различных хозяйственных нужд населения, на реке построено несколько водозаборных сооружений. Общая площадь орошаемых земель составляет 43 га, а суммарное изъятие воды за сезон 78 тыс. м ³. На 278-м км насосная установка мощностью 100 м³/час подаёт воду на животноводческую ферму. Для водоснабжения г. Сергиевска на 186,5 км построена насосная станция мощностью 300 м³/час. Насосная установка мощностью 50 м³/час, расположенная на 177,5 км, обеспечивает водой нефтеперегонную станцию.

Основные гидрологические характеристики р.	Сока
Площадь водосбора, км ²	11700
Средний годовой расход воды, м ³ /сек	
за многолетний период	_ 33,3
обеспеченный на 80%	_ 22,3
обеспеченный на 97%	_ 10,4
Объём годового стока, млн.м ³	

средний многолетний	1050
обеспеченный на 80%	701
обеспеченный на 97%	
Максимальный расход воды, м ³ /сек	
средний многолетний	365
обеспеченный на 1%	
обеспеченный на 3%	
обеспеченный на 5%	1060
обеспеченный на 10%	
Минимальные средние месячные расходы воды, м ³ /сек	
Летне-осенний	
обеспеченный на 80%	4,33
обеспеченный на 97%	1,17
Зимний	
обеспеченный на 80%	3,63
обеспеченный на 97%	
Средний сток наносов за год, тыс. т	
* * * * * * * * * * * * * * * * * * * *	

Примечание. Объём отложений равен частному от деления стока наносов (в тыс. т) на их объёмный вес. Величина объёмного веса приближенно составляет для илистого состава наносов 0.8 т/m^3 , для супесчаного 1.0 т/m^3 .

1933-2006 гг. средний уровень -220 см, высший уровень 590 см дата: 02.04.1947г., число случаев -1.

Низший уровень открытого русла - 100 см дата 22.08. 1957 г. последняя дата: 10.09.1996 г., число случаев -3.

Низший уровень зимнего периода 80 см, первая дата: 25.11.1996г. 1 случай. 1934, 1936 - 2006 гг. средний расход воды 19.8 м³/с, наибольший расход 1250 м³/с наблюдался 02.04.1947г. число случаев -1.

Наименьший расход летнего периода (открытого русла) — 1,36 м 3 /с дата: 28.07.1937 г., число случаев — 1.

Наименьший расход зимнего периода — $0,60 \text{ м}^3/\text{с}$ дата: 27.12.1939г., 1 случай.

На основе данных расходов воды в реке Сок у поста Сургут за 71 год с 1936 по 2006 годы проведены исследования изменения их средних значений за год и в отдельные месяцы. На рисунке 10 наглядно представлены тенденции изменения стока реки Сок. Средние годовые значения расходов воды увеличились в конце исследованного периода на 10 m^3 /сек. В отдельные месяцы межени сток увеличился от $10 \text{ до } 15 \text{ m}^3$ /сек, а в мае до 25 m^3 /сек. Только в апреле, когда проходят максимальные расходы воды половодья, наблюдается снижение стока на 16 m^3 /сек.

Такая тенденция водного режима характерна для закарстованных водосборов. Тенденция увеличения стока более интенсивная в меженный период. Относительные величины стока в месяцы межени увеличились в 2,5 раза.

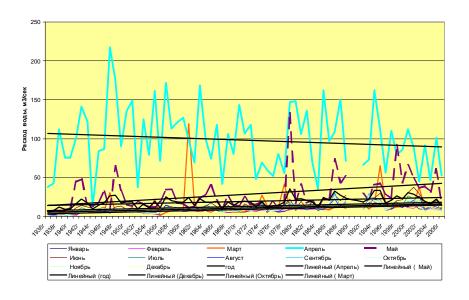


Рис. 10. Изменение стока реки Сок в створе Сургут

Наблюдаемая енденция изменения стока в реке Сок вполне закономерна, т.к. увеличение атмосферных осадков, особенно в зимний период, способствует накоплению влаги в водосборе, а повышение температуры воздуха и условия подстилающей поверхности перераспределяют эту влагу в пользу пополнения запасов подземных вод в апреле. Такие условия водного баланса в водосборе способствуют наиболее интенсивному увеличению стока в мае, когда отдача подземного бассейна максимальная.

Подтверждения полученным результатам можно получить на основе исследования изменений дебита родников или уровня зеркала подземных вод.

СПИСОК ЛИТЕРАТУРЫ

Кондратьев В.А. Подземные воды, Природа Куйбышевской области, Куйбышев, 1951. 294 с. - **Кузнецов А.В.** Реки. Природа Куйбышевской области, Куйбышев, 1951. 128 с.

Ляховская Л.Ф., Ляховская В.А. Изменение климатических характеристик в Самарской области за последние десятилетия. Самарская Лука: Бюл. 2006. № 17. С. 18-27. - **Ляховская Л.Ф.** Гидрография Самарской области. Географическое краеведение Самарской области. Ч.1 История и природа. Самара: Изд. СГПУ,2009. С. 53-66.

Носин В.А., Агафонов И.П. и др. Почвы Куйбышевской области. Куйбышев, 1949. 135 с.

Ресурсы поверхностных вод СССР. Описание рек, том 12 Нижнее Поволжье и Западный Казахстан, выпуск 1; Бассейн р. Волги ниже г. Чебоксары. Куйбышев, 1971. 358 с.