№ 318 Январь 2009

НАУКИ О ЗЕМЛЕ

УДК 551.58:556.1(571.1)

О.В. Мезениева

РЕСУРСЫ СУММАРНОГО КЛИМАТИЧЕСКОГО МЕСТНОГО СТОКА НА ЮГЕ ЗАПАДНОЙ СИБИРИ

Рассмотрены закономерности географического распределения водных ресурсов местного стока Западной Сибири, в том числе в бессточных областях. В качестве количественных характеристик стока рассмотрен рассчитанный по методу гидролого-климатических расчетов (ГКР) слой климатического стока и коэффициент стока. В качестве гидрографического рубежа, ограничивающего бессточные области, предлагается рассматривать линейное местоположение на суше границы, на которой прерывается постоянная речная сеть с местным стоком.

Ключевые слова: теплоэнергетические ресурсы климата, водный и тепловой баланс, бессточные области, оптимум увлажнения, коэффициент увлажнения, влажность почвы, местный сток.

Согласно исследованиям В.В. Берникова [1], А.В. Владимирова [2], Б.Б. Богословского и др. [3], А.М. Комлева [4], А.Н. Антипова и др. [5], В.М. Калинина и др. [6], Б.П. Ткачева [7] в южной части Западной Сибири благодаря исключительной равнинности рельефа, наличию плоско-западинного микрорельефа и засушливости климата в пределах водосборов крупных рек существуют обширные бессточные территории, с которых не происходит поступления воды поверхностным или подземным путем в существующие тальвеги и суходолы. Водные ресурсы атмосферных осадков здесь расходуются главным образом на испарение и частично на питание глубинных подземных вод. Бессточные площади осложняют структуру геосистем и влияют на их функционирование. Исследуя географические (климатические, геолого-геоморфологические, почвеннорастительные) условия юга Западной Б.П. Ткачев [7] относит этот регион к пограничному бореальному рубежу (бореальному экотону) между северными гумидно-мерзлотными и аридными бессточными областями. Спецификой этого региона является одновременное наличие черт континентальноаридной бессточности и северной мерзлотности.

Существование огромных бессточных территорий на юге Западной Сибири в междуречных пространствах таких крупных транзитных рек, как Тура, Тобол, Ишим, Иртыш (рис. 1), объясняется недостаточной глубиной вреза древних ложбин стока в пределах денудационных равнин, недостаточным дренированием подземных водоносных горизонтов в летний период даже при глубине вреза долин 50-60 м. Вследствие этого ландшафты междуречных равнин имеют специфическую структуру и функционирование, связанные с характером увлажнения, особенностями местного стока и дренированностью. Бессточность юга Западной Сибири объясняется главным образом континентальностью климата территории и наличием значительной по глубине сезонной и островной вечной мерзлоты. Наличие островной и таликовой мерзлоты, чередование мерзлых и немерзлых погребенных горизонтов встречаются вплоть до широты 55-56° с.ш. (до линии Свердловек – Ишим – Новосибирск) [8]. В эпохи похолоданий плейстоцена южная граница вечной мерзлоты перемещалась к югу до 52-54° с.ш. [9]. Существование бессточных областей юга Западной Сибири связывают с наличием мерзлото-суффозионно-просадочных морфоскульптур, определяющих условия для формирования микропонижений и колочной лесостепи и препятствующих стоку. В годы малой и средней водности бассейны с бессточными площадями испытывают недостаток воды, а в многоводные годы значительно переувлажнены и частично затоплены.

За счет меридиональной дифференциации на юге равнины происходит резкое изменение соотношения влаги и тепла, приводящее к чередованию вдоль 70–75° в.д. в полосе шириной всего в 300 км (от 57 до 54° с.ш.) природных зон от южной тайги (с избыточным увлажнением), зоны смешанных лесов (с оптимальным увлажнением) до северной, центральной, южной лесостепи и степи (с недостаточным увлажнением) [7, 10].

Сезонное промерзание грунтов на юге Западной Сибири имеет наибольшую глубину (2,0-2,5 м), что связано с малоснежностью и суровостью зимнего периода, нарастающими с запада на восток региона. Сезонные криогенные процессы в почвогрунтах способствуют формированию весеннего стока половодья, стекающего по мерзлому водоупору, в объеме 80-90% от годовой величины. Летний же период оказывается безводным, приводя к пересыханию водотоков. По данным А.В. Владимирова [2], известно, что на территории юга Западной Сибири систематически пересыхают реки в районах, где величина минимального 30дневного стока не превышает 0,5 л/(с·км²). И только в юго-восточной части равнины наблюдается пересыхание части рек с площадью бассейна около 200 км² при обводненности территории до 3 л/(с·км²). В Северном Казахстане постоянно пересыхают реки с площадью бассейна 900-1000 км², и далее к югу эта величина возрастает до 10000 км². Бессточные площади водосборов меняются по величине в зависимости от водности года, увеличиваясь в маловодные и уменьшаясь в многоводные годы.

Если на севере Западной Сибири имеется густая сеть постоянных водотоков, на которых производятся режимные гидрометрические наблюдения, то при продвижении к югу, в южной лесостепи, южнее изолинии нормы годового гидрометрического стока Y = 40—50 мм/год и нормы коэффициента стока 8...10% на

гидрографической карте исчезают средние и малые реки, остаются лишь реки с транзитным стоком, временные водотоки и многочисленные озера. При этом климатические водные ресурсы местного стока хоть и небольшие, но имеются (рис. 2). Часто при отсутствии водотоков в таких областях и, следовательно, достоверных данных о гидрометрическом стоке единственным источником информации о водных ресурсах мест-

ного стока может стать карта рассчитанного для метеостанций климатического стока (рис. 3), построенная с использованием метода гидролого-климатических расчетов [11–13]. По этому поводу М.А. Великанов [14] писал, что «...чисто гидрометрическое изучение стока должно быть отвергнуто как нереальное и нерациональное заменено гидрологическим на основе метода водного баланса».

Рис. 1. Схема бессточных областей бассейна р. Иртыш (штриховка), створов существующих и проектируемых гидроузлов (ромбики): I – Бухтарминский гидроузел; 2 – Усть-Каменогорский гидроузел; 3 – Шульбинский гидроузел; 4 – Пристанской створ; 5 – Усть-Заостровский створ; 6 – Крутогорский створ; 7 – Калачевский створ; 8 – канал Иртыш—Караганда; 9 – Китайский гидроузел; 10 – канал Иртыш—Карамай

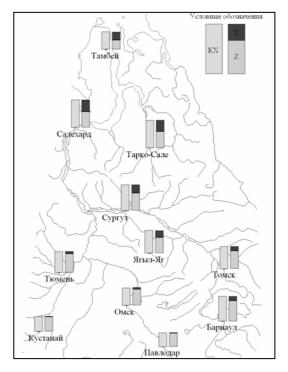


Рис. 2. Структура водного баланса Западной Сибири (темной заливкой показана доля стока)

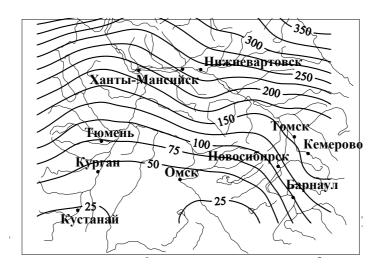


Рис. 3. Климатический местный сток в средний год У на юге Западной Сибири, мм/год

Изучение стока бессточных областей связано с необходимостью выделения их границ, использования для этого крупномасштабных карт, натурных наблюдений. Исследуя бессточные области юга Западной Сибири, Б.П. Ткачев [7] предлагает ландшафтный подход к определению границ водосбора, его действующей и бессточной площади и отмечает, что бессточные области не имеют функциональных границ. Однако при изучении макроландшафтных географических закономерностей для решения задачи районирования в некоторых случаях может быть достаточно гидролого-климатической информации, полученной с помощью метода гидролого-климатических расчетов.

Для обозначения границ территории бессточных областей нами предлагается использовать среднюю величину слоя стока Y = 30 мм/год в интервале 15-45 мм/год (или модуля стока M в интервале 0,5-1,5 л/(с·км²) и определить природный гидрографический рубеж как линейное местоположение на суше границы, на которой прерывается постоянная речная сеть с местным стоком [15-18]. Гидрографический рубеж на картах тесно коррелирует не только с определенной изолинией нормы стока, но также соответствует изолиниям нижнего уровня оптимальности увлажнения для растений (сочетания влаги и тепла с коэффициентом увлажнения $\beta_{KX} = KX/Zm = 0.65$) и средней годовой относительной влажности деятельного слоя в долях наименьшей влагоемкости на уровне $V_{\rm cp} = W_{\rm cp} / V_{\rm cp}$ $W_{\rm HB} = 0.6 = V_{\rm pk}$, соответствующей влажности разрыва капилляров. Эта гидролого-почвенно-мелиоративная квазиконстанта принята нами в качестве количественного индикатора гидрографического рубежа на гидрологических картах. Гидрографический рубеж образует динамическую гидрографическую пограничную зону, мигрируя в пространстве в годы с различной структурой водного и теплового балансов, т.е. сухие и влажные годы повторяемостью 1 раз в 5 лет (соответственно с обеспеченностью 20 и 80%) согласно продолжительности циклов водности рек Западно-Сибирской равнины, выявленных В.А. Земцовым [19].

Режим гидрометрического стока, измеряемого в замыкающих створах речных бассейнов, зависит в значительной степени от процессов трансформации стока на

поверхности водосборов при формировании руслового стока, в то время как местный климатический сток в основном отражает взаимодействие местного увлажнения и местного испарения при косвенном учете гидравлических условий формирования стока и испарения. Несмотря на эти различия, при незначительной антропогенной трансформации речного стока в определенных природных условиях наблюдается равенство местного климатического и гидрометрического стоков. Такие условия существуют в равнинных и предгорных ландшафтах при оптимальном сочетании влаго- и теплоресурсов испарения. Как показывают исследования [10, 19, 20], на территории Западной Сибири условия оптимального увлажнения наблюдаются к северу от границы лесной и лесостепной зон. Именно здесь измеренный сток с водосборов средних рек площадью более $F_{2KP} = 2$ тыс. км² (вторая критическая площадь по [21-23]), при которой стабилизируется грунтовое питание рек, тесно коррелирует с расчетными значениями климатического стока.

При современном уровне изученности элементов водного баланса водосборов юга Западной Сибири в некоторых случаях в качестве наиболее надежной основы для описания местного элементарного стока приходится использовать не измеренный сток, а поля изолиний годовых норм гидрометрического стока, а внутригодовой ход рассчитанного стока рассматривать в качестве наиболее обоснованной модели. Гидрометрический сток из-за потерь на испарение с водосборов бессточных областей, определенный при номинальной площади водосбора с помощью карт изолиний, оказывается несколько меньшим, чем местный климатический сток, рассчитанный по методу ГКР.

Вместе с тем исследование территориальных географических закономерностей формирования стока, единых для большого количества малых бассейнов в пределах относительно однородной по физико-географическим условиям территории, возможно с использованием метода ГКР. Его генетическая обоснованность и гибкость расчетных параметров, обладающих ясным физическим смыслом, дает исследователю инструмент, позволяющий выразить и получить в явном и неявном виде любой элемент водного баланса, в том числе и сток. Как показыва-

ют исследования [10], точность расчетов по данному методу соизмерима с точностью измерений стока, влажности почвы и испарения.

Исходными данными для воднобалансовых расчетов и количественной индикации границы бессточных областей рубежей в данной работе послужили материалы Омского, Западно-Сибирского, Уральского, Красноярского УГМС. Результаты средних годовых, ежегодных, ежемесячных и подекадных (за период инструментальных наблюдений с 1936 по 2007 г.) расчетов элементов водного баланса и тепловлагообеспеченности для 238 метеостанций Западно-Сибирской равнины с использованием современного подхода к оценке теплоэнергетических ресурсов процесса испарения [24, 25] позволили комплексно проанализировать условия тепловлагообеспеченности юга Западной Сибири, в том числе с учетом влияния грунтовых вод на элементы водного баланса и характеристики естественной тепловлагообеспеченности. При анализе положения гидрографического рубежа на территории Западно-Сибирской равнины были использованы гидрографические карты Атласа СССР [26], карты Экологического атласа России [27] и Атласа мирового водного баланса [28], а также построенные с помощью программы Surfer векторные поля изолиний, полученных расчетным путем характеристик естественной тепловлагообеспеченности [15, 16].

Пространственное распределение средних годовых величин суммарного климатического местного стока Y на территории Западной Сибири определяется взаимодействием климатических и ландшафтных условий, рельефом и уклонами поверхности. На распределение зональных величин годового стока также оказывают влияние мерзлота, болотная аккумуляция осадков, наличие бессточных районов. Так, наибольшие значения слоя стока относятся к побережью Карского моря (180 мм/год), северовосточным окраинам Западной Сибири по правому берегу Енисея (260 мм/год) и северо-восточным предгорьям Уральского хребта (300 мм/год). Наименьшие значения среднего годового климатического стока получены для расположенных на юге Западной Сибири междуречий Тобол – Ишим, Ишим – Иртыш, Кулундинской и Барабинской степи (5-50 мм/год).

Малые величины климатического стока и коэффициентов стока (см. рис. 2, табл. 1) объясняют слабое развитие речной сети на юге Западно-Сибирской равнины. В целом ход изолиний климатического стока подчиняется закону географической зональности, т.к. для данной слаборасчлененной и слабодренированной территории расчлененность рельефа оказывает слабое влияние. Выполненные расчеты и векторное картографирование элементов водного баланса позволяют анализировать его территориальную структуру и внутригодовой ход величин климатического стока (см. рис. 2, 4, табл. 2). Внутригодовая структура водного баланса на территории Западной Сибири на примере крайних станций представлена в табл. 3.

Результаты расчетов месячных норм местного климатического стока *Y* (см. табл. 2) позволили составить карты месячных норм стока, характеризующие территорию юга Западной Сибири в *апреле* среднего года значениями 2–8 мм/мес., в *мае* — значениями от 10—

20 мм/мес. на крайнем юге равнины до 40...50 мм/мес. на юго-востоке и в Обь-Иртышском междуречье. С продвижением фронта снеготаяния с юго-запада на северо-восток в *шоне* территориальный максимум слоя стока оказывается в северной половине лесоболотной зоны (120–160 мм/мес.), а в *шоле* – в лесотундре и тундрах крайнего севера территории (120–180 мм/мес.). В *шоле* в северной лесостепи слой месячного стока составляет всего лишь 10–15 мм/мес. В северной половине лесоболотной зоны слой стока уменьшается в *августе* до 30–50 мм/мес и поддерживается атмосферными осадками, а в южной чисти равнины сток составляет 10–15 мм/мес. К *сентябрю* на всей территории Западной Сибири слой стока за месяц наименьший – от 5 до 25 мм/мес.

Анализ результатов воднобалансовых расчетов выявил территориальные и структурные закономерности климатического местного стока, т.е. соотношения элементов водного баланса в зависимости от широты и степени континентальности климата. В Западной Сибири при общем увеличении с севера на юг теплоэнергетических ресурсов в структуре затрат водных ресурсов атмосферного увлажнения КХ в средний год отмечается увеличение доли стока У от тундры к таежной зоне и уменьшение доли испарения Z. В южной части Западной Сибири территориальные закономерности структуры водного баланса указывают на резкое уменьшение от подтайги к степной зоне доли стока У и увеличение доли испарения Z от величины атмосферного увлажнения КХ соразмерно с уменьшением атмосферного увлажнения и ростом теплоэнергетических ресурсов (см. рис. 2). На рис. 4 представлена географическая закономерность изменения внутригодового распределения рассчитанного месячного климатического стока с севера на юг Западной Сибири. На диаграммахгидрографах видно, что максимум стока половодья по мере продвижения с севера на юг смещается с лета на весну, а его годовая величина уменьшается. Представленные карты позволяют наглядно отобразить выявленные территориальные и временные закономерности стока, в том числе для бессточных областей, и дают территориально согласованную информацию для решения различных географических, экологических и инженерно-гидрологических задач.

В ходе анализа результатов воднобалансовых расчетов количественно изучена внутригодовая структура климатического стока, формирующегося за счет дренирования различных по мощности слоев почвогрунта. Анализ расчетных данных табл. 4 показывает, что и при глубоком, и при высоком залегании грунтовых вод согласно расчетной схеме метода ГКР в первую очередь происходит дренирование верхних слоев деятельного слоя (0-50 см), переувлажненных в результате перераспределения части зимних осадков на весенний период. Весенний сток в основном формируется за счет дренирования верхнего полуметрового слоя. К середине летнего периода, когда возрастают теплоресурсы испарения, интенсивнее осущаются более глубокие горизонты (0-100 см). Суммарный сток значительно возрастает при повышении уровня грунтовых вод $h_{\rm f}$, выраженного в долях высоты капиллярной каймы h_{κ} , особенно при их близком к поверхности расположении $T = h_{\Gamma}/h_{\kappa} \rightarrow 1,0.$

Годовые и летние (05–08) нормы водного эквивалента теплоэнергетических ресурсов Zm, осадков KX, суммарного увлажнения H, суммарного испарения Z, климатического стока Y (мм/год, мм/05–08) коэффициентов атмосферного β_{KX} и общего β_{H} увлажнения, испарения β_{Z} и стока η

Станция	Zm	KX	KX_{05-08}	H_{05-08}	Z	Y	$\beta_{KX} = KX/Zm$	$\beta_{H05-08} = H_{05-08}/Zm_{05-08}$	$\beta_Z = Z/Zm$	$\eta = Y/KX$
Салехард	419	675	606	613	365	300	1,61	1,73	0,87	0,47
Туруханск	381	753	662	671	346	330	1,98	2,08	0,91	0,54
Тарко-Сале	389	686	583	608	348	280	1,76	1,85	0,82	0,49
Верхне-Имбатское	457	765	679	685	396	320	1,67	1,77	0,87	0,47
Березово	479	713	623	633	407	284	1,49	1,56	0,85	0,42
Подкаменная Тунгуска	508	816	726	735	438	340	1,61	1,69	0,86	0,46
Сургут	528	654	574	584	420	218	1,24	1,31	0,80	0,35
Ларьяк	530	698	612	617	434	252	1,32	1,38	0,82	0,37
Енисейск	577	746	659	668	465	252	1,29	1,35	0,81	0,37
Шаим	597	579	464	500	433	150	0,97	1,01	0,73	0,25
Колпашево	607	598	284	481	440	189	0,99	1,01	0,72	0,26
Томск	631	637	276	528	457	176	1,01	1,30	0,72	0,28
Тобольск	649	567	266	473	457	89	0,87	0,90	0,70	0,19
Тюмень	696	524	241	416	488	72	0,75	0,60	0,70	0,14
Новосибирск	681	514	249	414	442	58	0,75	0,77	0,65	0,13
Курган	687	473	211	376	420	47	0,69	0,67	0,61	0,11
Омск	691	438	216	357	398	41	0,63	0,63	0,58	0,08
Кустанай	764	373	165	293	351	13	0,50	0,50	0,46	0,05
Кокчетав	743	406	188	320	376	20	0,55	0,57	0,51	0,06
Павлодар	793	352	138	276	333	9	0,46	0,46	0,42	0,04
Рубцовск	763	454	173	362	406	28	0,60	0,63	0,53	0,10

Таблица 2

Внутригодовой ход климатического стока Y (мм) и коэффициента стока η

Станция	04	05	06	07	08	09	10	Год
Тамбей	-	-	20	114	72	21	-	233
	-	-	0,07	2,71	1,61	0,35	-	0,54
Салехард	-	27	130	104	38	15	-	316
	-	0,07	1,97	1,42	0,48	0,22	-	0,47
Тарко-Сале	-	24	133	110	43	20	-	334
	_	0,07	1,56	1,33	0,55	0,22	_	0,49
Сургут	_	34	112	53	20	10	_	232
	_	0,10	1,73	0,70	0,26	0,15	_	0,35
Ягыл-Яг	13	60	65	37	19	11	4	215
	0,06	0,93	0,82	0,41	0,22	0,16	0,07	0,32
Томск	12	63	53	25	12	6	1	176
	0,05	1,23	0,78	0,31	0,16	0,12	0,02	0,28
Тобольск	5	44	31	13	6	4	1	106
	0,03	0,87	0,51	0,16	0,09	0,06	0,01	0,19
Тюмень	6	31	18	8	4	2	1	72
	0,04	0,65	0,34	0,10	0,06	0,04	0,02	0,14
Барнаул	8	64	33	11	4	2	1	126
	0,03	0,45	0,59	0,15	0,07	0,05	0,02	0,20
Омск	2	16	10	5	2	1	0	36
	0,01	0,44	0,17	0,07	0,04	0,03	0,01	0,08
Кустанай	2	9	4	2	1	0	0	19
	0,02	0,27	0,11	0,03	0,02	0,01	0,00	0,05
Кокчетав	2	12	6	3	2	1	0	26
	0,02	0,35	0,13	0,05	0,03	0,02	0,01	0,06
Павлодар	2	8	3	1	1	0	0	16
	0,01	0,31	0,10	0,03	0,01	0,01	0,00	0,04

Таблица 3

Сводные результаты внутригодовых расчетов элементов теплового и водного балансов по месяцам для станций Салехард и Омск

				Cm	. Салехард					
Месяц,	Зима	Апрель	Май	Июнь	Июль	Август	Сентябрь	Октябрь	Лето	Год
сезон	10-04	04	05	06	07	08	09	10	05-08	
H	10	-	46	206	230	132	57	-	613	681
Zm	10	-	20	79	139	117	54	-	152	419
Z	8	-	19	76	126	94	42	-	314	365
Y	3	_	27	130	104	38	15	-	298	316
$V_{\rm cp}$	1,05	1,05	1,73	1,90	1,40	1,08	1,04	1,05	1,53	1,29
					7 0					

					Ст. Омск					
Месяц	11-03	04	05	06	07	08	09	10	05-08	Год
H	30	120	120	35	57	73	51	34	54	438
Zm	30	12	95	149	173	147	98	17	564	691
Z	7	9	72	94	91	67	41	8	325	398
Y	1	2	16	10	5	2	1	0	32	36
$V_{\rm cp}$	0,72	0,91	0,95	0,78	0,67	0,61	0,57	0,62	0,75	0,72

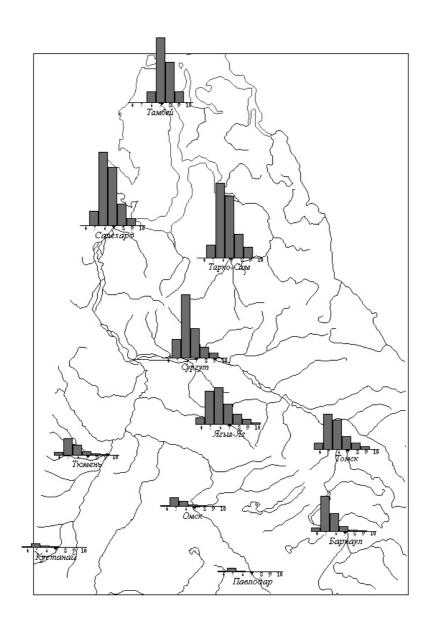


Рис. 4. Внутригодовая структура среднего годового климатического местного стока \boldsymbol{Y}

Таблица 4 Внутригодовое распределение климатического стока Y (мм) в средний год по слоям при различном относительном положении уровня грунтовых вод $T=h_r/h_\kappa$ (соотношении глубины уровня грунтовых вод h_κ и высоты капиллярной каймы h_κ)

Станция	$h_{\rm СЛОЯ}$, см	$h_{\scriptscriptstyle m I}/\ h_{\scriptscriptstyle m K}$	04	05	06	07	08	09	10	Год
Томск	0-100	5,0	6	76	32	12	8	6	5	153
	0-50	3,0	15	112	16	6	6	5	7	178
Барнаул	0-100		8	69	34	9	4	3	3	136
	0-50		20	113	17	3	2	3	4	171
Томск	0-100	2,0	6	76	33	13	8	6	5	156
	0-50	2,0	15	113	17	6	6	6	7	182
Барнаул	0-100		10	82	47	16	8	6	5	185
	0-50		22	131	27	8	6	5	6	219
Томск	0-100	1,0	10	128	80	46	30	22	16	356
	0-50	1,0	21	176	54	32	26	21	18	379
Барнаул	0-100		23	191	175	107	58	44	30	680
	0-50		44	272	135	83	51	41	32	718

Величина стока при этом может возрастать в 2–3 раза по сравнению с периодами глубокого расположения уровня грунтовых вод. Рассчитанные нормы и характеристики изменчивости климатического стока за год и по

сезонам приведены в табл. 5, 6. Временная изменчивость суммарного стока уменьшается с поднятием уровня грунтовых вод. Коэффициенты вариации стока за летний и весенний периоды превышают годовые его величины.

Средний многолетний годовой, летний (05–08) и весенний (04–06) климатический сток при различном положении уровня грунтовых вод $T=h_{\rm r}/h_{\rm k}$

	Y при $T = h_{r}/h_{\kappa}$									
Станция		T = 5,0			2,0	1,0				
	Год	05-08	04-06	Год	05-08	Год	05-08			
Томск	126	103	105	153	124	553	432			
Посевная	76	61	142	94	75	411	309			
Маслянино	76	59	61	94	74	414	309			
Центральный Рудник	822	665	518	905	727	1582	1238			
Барнаул	76	67	82	124	104	604	462			

Таблица 6

Коэффициенты вариации годового, летнего (05–08) и весеннего (04–06) климатического стока Y при различном положении относительного уровня грунтовых вод $T = h_{\rm r}/h_{\rm K}$

		Cv_{Y} при $T = h_{r'}/h_{\kappa}$									
Станция		T = 5.0			2,0	1,0					
	Год	05-08	04–06	Год	05-08	Год	05-08				
Томск	0,398	0,440	0,461	0,367	0,407	0,194	0,217				
Посевная	0,441	0,497	0,531	0,407	0,458	0,200	0,221				
Маслянино	0,425	0,462	0,464	0,392	0,425	0,194	0,205				
Центральный Рудник	0,203	0,210	0,221	0,196	0,203	0,164	0,172				
Барнаул	0.515	0.541	0.550	0.442	0.465	0.214	0.225				

Полученные в ходе водно-балансовых расчетов количественные характеристики стока и их обобщения в виде полей изолиний для условий отсутствия постоянных водотоков на юге Западной Сибири могут быть использованы при решении различных инженер-

но-гидрологических и эколого-географических задач, например при обосновании водохозяйственных мероприятий в целях водообеспечения населенных пунктов или изучении гидрологических закономерностей функционирования геосистем.

ЛИТЕРАТУРА

- 1. Берников В.В. «Джарыки» и их почвы. Омск: Изд-во ОмСХИ, 1970. С. 84–88.
- 2. Владимиров А.В. Минимальный сток рек СССР. Л.: Гидрометеоиздат, 1970. 214 с.
- 3. Богословский Б.Б., Самохин А.А., Иванов К.Е., Соколов Д.П. Общая гидрология. Л.: Гидрометеоиздат, 1984. 422 с.
- 4. Комлев А.М. Исследования и расчеты зимнего стока рек (на примере Западной Сибири) // Труды Западно-Сибирского регионального НИГМИ, 1973. Вып. 9, 200 с.
- 5. Антипов А.Н. и др. Ландшафтно-гидрологические характеристики Западной Сибири. Иркутск, 1989. 221 с.
- 6. Калинин В.М., Ларин С.И., Романова И.М. Малые реки в условиях антропогенного воздействия. Тюмень: Изд-во ТюмГУ, 1998. 220 с.
- 7. Ткачев Б.П. Бессточные области юга Западной Сибири. Томск: Изд-во ТГУ, 2001. 160 с.
- 8. Инженерная геология СССР. Т. 2: Западная Сибирь. М.: Изд-во МГУ, 1979. 495 с.
- 9. Галичинский Д.А. Сезонная криолитозона Западной Сибири. М.: Наука, 1986. 190 с.
- 10. Карнацевич И.В., Мезенцева О.В., Тусупбеков Ж.А., Бикбулатова Г.Г. Возобновляемые ресурсы тепловлагообеспеченности Западно-Сибирской равнины и динамика их характеристик / Под общ. ред. О.В. Мезенцевой. Омск: Изд. ОмГАУ, 2007. 270 с.
- 11. Мезенцев В.С. Метод гидролого-климатических расчетов и опыт его применения для районирования Западно-Сибирской равнины по признакам увлажнения и теплообеспеченности // Труды ОмСХИ. Омск: Изд-во ОмСХИ, 1957. Т. 27. 121 с.
- 12. Мезенцев В.С., Карнацевич И.В. Увлажненность Западно-Сибирской равнины. Л.: Гидрометеоиздат, 1969. 168 с.
- 13. Мезенцев В.С. Гидролого-климатические основы проектирования гидромелиораций. Омск: Изд-во ОмГАУ, 1993. 128 с.
- 14. *Великанов М.А.* Водный баланс суши. М.: Гимиз, 1940. 180 с.
- 15. Мезенцева О.В. Внутригодовая структура климатического склонового стока в условиях Западно-Сибирской равнины в средний год // Омский научный вестник. 2005. № 4 (33). С. 183–191.
- 16. *Мезенцева О.В.*, *Игенбаева Н.О.* Структура тепловых и водных балансов на территории Западной Сибири в средний год // Омский научный вестник. 2004. № 4(29). С. 172–176.
- 17. *Мезенцева О.В.* Характеристики тепловлагообеспеченности водосборов и геотопология новой гидрологической константы // Омский научный вестник. 2006. № 8(44). С. 298–302.
- 18. *Мезенцева О.В.* Пространственно-временная динамика элементов водного баланса и характеристик увлажнения на юге Западной Сибири // Омский научный вестник. Сер. Ресурсы Земли. 2007. № 1(53). С. 119–125.
- 19. Земцов В.А. Ресурсы поверхностного стока в бассейне Оби: основные закономерности и проблемы управления: Дис. ... д-ра геогр. наук. Томск, 2004. 321 с.
- 20. Режимы влагообеспеченности и условиях гидромелиорации Степного края / Под. ред. В.С. Мезенцева. М.: Колос, 1974. 239 с.
- 21. *Бефани А.Н.* Пути развития генетических методов расчета максимального дождевого стока // Труды IV Всесоюзного гидрологического съезда. Л.: Гидрометеоиздат, 1976. Т. 3. С. 11–21.
- 22. Воскресенский К.П. Норма и изменчивость годового стока рек Советского Союза. Л.: Гидрометеоиздат, 1962. 545 с.
- 23. Огиевский А.В. Гидрология суши. М.: Сельхозгиз, 1951. 515 с.
- 24. Карнацевич И.В. Расчеты тепловых и водных ресурсов малых речных водосборов на территории Сибири. Ч. 2: Водные ресурсы и водный баланс. Омск: Изд-во ОмСХИ, 1991. 82 с.
- 25. Карнацевич И.В. Расчеты тепловых и водных ресурсов малых речных водосборов на территории Сибири. Ч. 1: Теплоэнергетические ресурсы климата и климатических процессов. Омск: Изд-во ОмСХИ, 1989. 76 с.
- 26. Атлас СССР. М.: ГУГИК, 1983. 260 с.
- 27. Экологический атлас России. М.: Карта, 2002. 128 с.
- 28. Атлас Мирового водного баланса. М.; Л.: Гидрометеоиздат, 1974. 46 карт.

Статья представлена научной редакцией «Науки о Земле» 30 сентября 2008 г.