МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЙ В Р. ЛЕНА ДЛЯ НАУЧНОГО ОБОСНОВАНИЯ ИНЖЕНЕРНЫХ МЕРОПРИЯТИЙ ПО ПРОТИВОПАВОДКОВОЙ ЗАЩИТЕ

Александр Тимофеевич Зиновьев

Институт водных и экологических проблем СО РАН, 656038, Россия, г. Барнаул, ул. Молодежная, 1, кандидат физико-математических наук, заведующий лабораторией гидрологии и геоинформатики, тел. (3852)66-64-74, e-mail: zinoviev@iwep.ru

Константин Борисович Кошелев

Институт водных и экологических проблем СО РАН, 656038, Россия, г. Барнаул, ул. Молодежная, 1, кандидат физико-математических наук, старший научный сотрудник лаборатории гидрологии и геоинформатики, тел. (3852)66-78-93, e-mail: koshelev@iwep.ru

Константин Валерьевич Марусин

Институт водных и экологических проблем СО РАН, 656038, Россия, г. Барнаул, ул. Молодежная, 1, ведущий инженер лаборатории гидрологии и геоинформатики, тел. (3852)66-60-11, e-mail: kat@iwep.ru

Для научного обоснования разрабатываемых инженерных мероприятий по противопаводковой защите ряда населенных пунктов на р. Лена (республика Caxa) создан комплекс компьютерных одномерных и двумерных горизонтальных моделей течений на основе уравнений Сен-Венана. Выполнены сопоставительные расчеты для определения эффективности предлагаемых мероприятий по строительству защитных сооружений и проведению русловыправительных работ.

Ключевые слова: наводнения, р. Лена, математическое моделирование, противопаводковые мероприятия.

MATHEMATICAL MODELING OF FLOWS IN LENA RIVER FOR SCIENTIFIC SUBSTANTIATION OF ENGINEERING MEASURES FOR FLOOD PROTECTION

Alexander T. Zinoviev

Institute for Water and Environmental Problems SB RAS, 656038, Russia, Barnaul, 1 Molodyoznaya St., Ph. D., head of Laboratory of Hydrology and Geoinformatics, tel. (3852)66-64-74, e-mail: zinoviev@iwep.ru

Konstantin B. Koshelev

Institute for Water and Environmental Problems SB RAS, 656038, Russia, Barnaul, 1 Molodyoznaya St., Ph. D., senior researcher of Laboratory of Hydrology and Geoinformatics, tel. (3852)66-78-93, e-mail: koshelev@iwep.ru

Konstantin V. Marusin

Institute for Water and Environmental Problems SB RAS, 656038, Russia, Barnaul, 1 Molodyoznaya St., engineer of Laboratory of Hydrology and Geoinformatics, tel. (3852)66-60-11, e-mail: kat@iwep.ru

For scientific substantiation of proposed measures for flood protection of settlements on the Lena river (Republic of Sakha) created the complex of computer one-dimensional and twodimensional horizontal models of flows based on the Saint-Venant equations. Comparative calculations of the effectiveness of the proposed building of dams and engineering measures in river bed were realized.

Key words: floods, Lena river, mathematical modeling, flood protection measures.

Введение. Для уточнения имеющихся данных о масштабах вредного воздействия вод на населенные пункты на р. Лена (на территории Иркутской области и республики Саха), а также с целью научного обоснования эффективности предлагаемых инженерных решений по противопаводковой защите населенных пунктов были построены а) компьютерная гидродинамическая модель рассматриваемого протяженного участка р. Лена, позволяющая рассчитать максимальные уровни водной поверхности у населенных пунктов по данным на гидропостах (г/п) и б) плановые компьютерные модели течений для отдельных участков р. Лена в районе населенных пунктов (н.п.).

Постановка задач. Одномерная компьютерная модель течения на протяженном участке р. Лена построена на основе системы одномерных нестационарных уравнений Сен-Венана. Для создания компьютерной модели течения использованы данные о расходах на г/п Чанчур, Кучуг, Коношаново, Усть-Кут (Закутье), Таюра, Макарово, Змеиново. Морфометрические данные для рассматриваемого участка р. Лена определены в 166 створах. Для каждого створа заданы минимальный уровень отметки дна в Балтийской системе координат для данного сечения и поперечное сечение долины реки с его геометрическими и морфометрическими характеристиками (морфоствор). Разница между расчетными и наблюдаемыми (оценочными для случая половодья 1% обеспеченности) уровнями поверхности воды не превышает 40 см.

Плановая компьютерная модель течения на участках со сложной морфометрией русла построена на основе математических моделей и методов их численной реализации, подробно изложенных в [1, 2].

Результаты расчетов. На рис. 1 приведены результаты численного моделирования течения в р. Лена на участке от д. Чанчур до п. Витим протяженностью около 1344 км. Здесь по ось X отложено расстояние по руслу р. Лена; отметка «1344 км» соответствует местоположению д. Чанчур; отметка «0 км» отвечает положению п. Витим. Отметка «516 км» соответствует положению д. Макарово.

В качестве примера на рис. 2 показан рассчитанный уровень поверхности воды вдоль русла р. Лена в районе д. Макарово в пик половодья 2001 г. В чем его смысл? По данным послепаводковых обследований при максимальных уровнях подъема воды в половодье подтапливается северная часть этого населенного пункта. Так, в 2001 г. наблюдался заход воды в населенный пункт по пойме ручья, а вдоль береговой линии вода доходила до уровня асфальтовой дороги. Рассчитанные по 1DH-модели уровни воды близки к уровням, определенным по результатам гидрологических расчетов уровней при расходах 1% обеспеченности и используемым при ГИС-моделировании границ территории затопления для данного населенного пункта. Подтвержденные математическим

моделированием результаты ГИС-моделирования обоснованно используются для разработки инженерных мероприятий противопаводковой защиты.

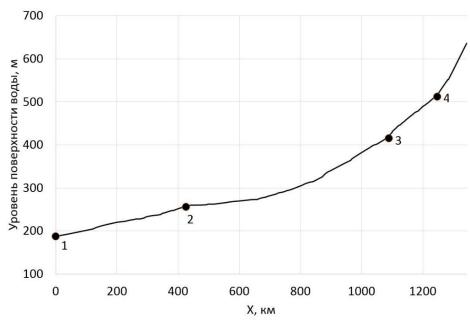


Рис. 1. Расчетный уровень поверхности воды вдоль русла р. Лена для расходов половодья 1% обеспеченности (цифрами обозначены максимальные исторически наблюденные уровни воды: 1 – Витим, 2 – Змеиново, 3 – Жигалово, 4 – Качуг)

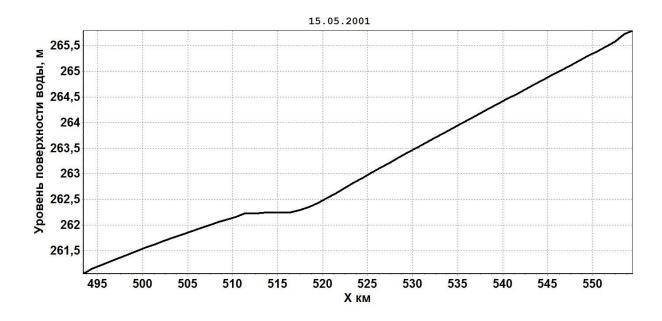


Рис. 2. Расчетный уровень поверхности воды вдоль русла р. Лена в районе д. Макарово в пик половодья 2001 г.

Для научного обоснования эффективности предлагаемых инженерных решений по противопаводковой защите н.п. выполнены расчеты с использованием плановых компьютерных 2DH-моделей течения на участках р. Лена вблизи

рассматриваемых поселений. В качестве примера рассмотрим влияние строительства дамбы около поселка городского типа (п.г.т.) Пеледуй (рис. 3) и уг-

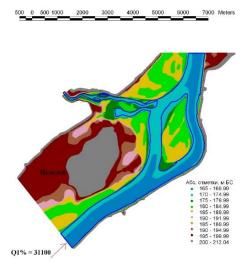


Рис. 3. Схема участка р. Лена около п.г.т. Пеледуй

лубления дна левого рукава р. Лена на границы затопления при наличии затора для расхода 1% обеспеченности.

Расход 1% обеспеченности для рассматриваемого участка реки равен 31100 м³/с. В данном случае для компьютерного моделирования использовался программный комплекс с открытым кодом Delft3D. Расчетная сетка содержала 164 х 218 узлов. Затор моделировался заданием повышенного уровня воды в замыкающем створе расчетного участка.

Результаты вычислений для исходного рельефа участка русла р. Лена без затора представлены на рис. 4a, а при наличии затора – на рис. 4б.

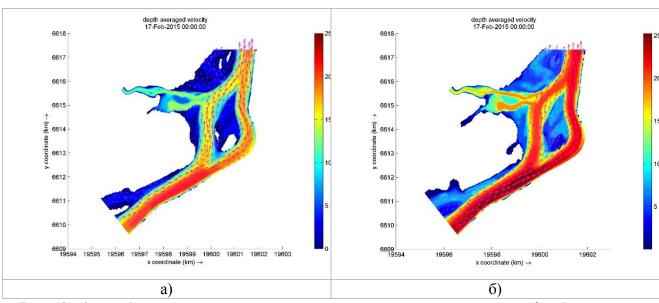


Рис. 4: а) глубина воды и скорости течения для исходного рельефа без затора; б) глубина воды и скорости течения для исходного рельефа при наличии затора

Спроектированное положение дамбы позволяет избежать затопления пойменной территории, прилегающей к п.г.т. Пеледуй. Результаты вычислений для рельефа поймы с дамбой при наличии затора приведены на рис. 5а.

Другим способом уменьшения негативного влияния затора является углубление русла реки. При проведении расчетов принималось, что углубление левого рукава р. Лена равно 1 м. Результаты вычислений для рельефа с прорезью при наличии затора приведены на рис. 5б. Расчеты показали, что влияние затора на уровень воды уменьшится вдвое.

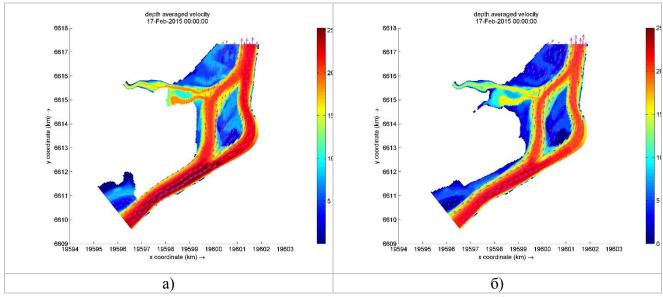


Рис. 5: а) глубина воды и скорости течения для рельефа с дамбой при наличии затора; б) глубина воды и скорости течения для рельефа с прорезью левого рукава р. Лена при наличии затора

По положению границ течения на рис. 4а и 5б можно заключить, что в данном случае углубление русла реки полностью снимает влияние заторообразования.

Выводы. Из результатов расчетов следует, что строительство дамбы позволит полностью обезопасить п.г.т. Пеледуй от последствий половодья с расходом 1% обеспеченности, но не уменьшит воздействие самого затора на уровень воды. Углубление русла может значительно уменьшить негативное влияние затора на уровни воды, однако полностью избежать подтопления окраин поселка при предполагаемом дноуглублении не удастся.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Зиновьев А.Т., Кошелев К.Б. Моделирование процесса затопления пойменных территорий для участков крупных рек со сложной морфометрией русла и поймы // Водное хозяйство России. -2013. -№ 6. C. 17–31.
 - 2. Delft3D-FLOW User Manual. WL j Delft Hydraulics, Delft, The Netherlands, 2010.

© А. Т. Зиновьев, К. Б. Кошелев, К. В. Марусин, 2015