Международная конференция Сети водохозяйственных организаций стран Восточной Европы, Кавказа и Центральной Азии (СВО ВЕКЦА)

«Вода для мелиорации, водоснабжения отраслей экономики и природной среды в условиях изменения климата»

«Будущее бассейна Амударьи в условиях изменения климата и других глобальных изменений»

Научно-информационный центр МКВК А.Сорокин, А.Назарий

Ташкент – 6 - 7 ноября 2018г.

новости

БАЗА ДАННЫХ

АНАЛИТИКА

инструменты

БАЗА ЗНАНИЙ

водный мир

ПРОЕКТЫ

ПРОЕКТЫ

Адаптация управления трансграничными водными ресурсами в бассейне Амударьи к возможным изменениям климата

Цель проекта: повышение потенциала стран бассейна Амударьи для адаптации управления трансграничными водными ресурсами в условиях климатических изменений и иных неопределенностей.

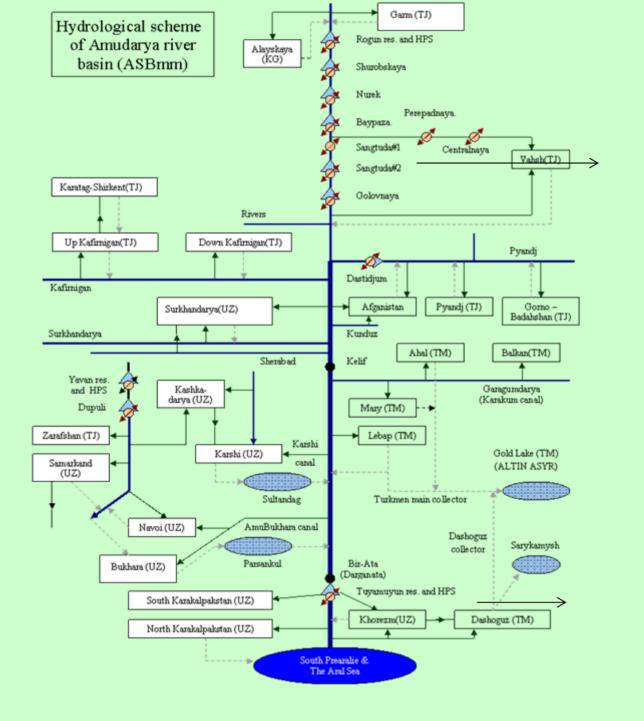
действующий

Оценка изменения ценности земли и разработка инструмента для поддержки изучения вопроса улучшенного планирования землепользования в орошаемых низовьях Центральной Азии (LaVaCCA)

Цель проекта: исследование развития землепользования и динамика производства земель в орошаемых низовьях бассейна Аральского моря

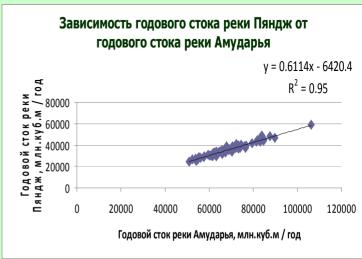
действующий

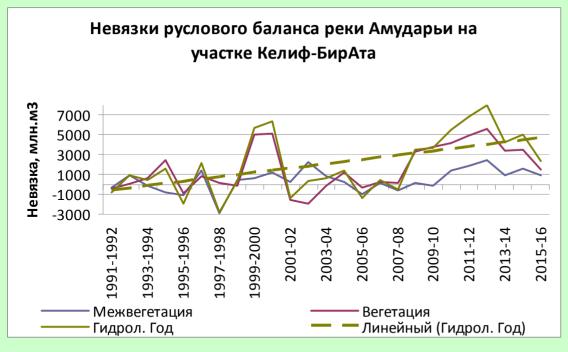
Общей целью Проекта PEER "Адаптация управления водными ресурсами трансграничных вод бассейна Амударьи к возможным изменениям климата" (USAID) было повышение потенциала стран бассейна Амударьи по эффективному управлению трансграничными водными ресурсами в условиях климатических и иных изменений. (2015—2017гг.)


Цель достигается на базе моделирования и комплексных исследований вопросов управления водными ресурсами трансграничных рек бассейна Амударьи на перспективу в условиях возможного изменения климата и вызовов будущего в увязке с национальными планами развития орошаемого земледелия и гидроэнергетики.

Основные задачи:

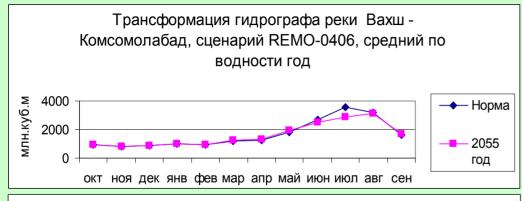
- Оценка возможных изменений в гидрологическом режиме рек бассейна Амударьи и будущих нормах водопотребления, вызванных изменениями климата
- Исследование сценариев регулирования стока крупными водохранилищными гидроузлами с ГЭС и его влияния на водообеспеченность орошаемых земель и водных экосистем бассейна
- Оценка водопотребления

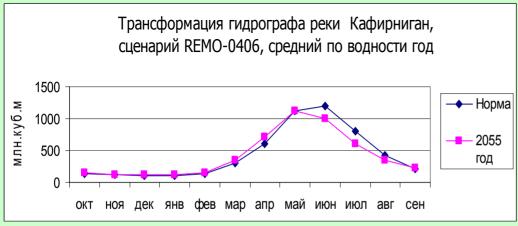



Восстановление и исследование рядов стока рек бассейна Амударьи, млн.м3

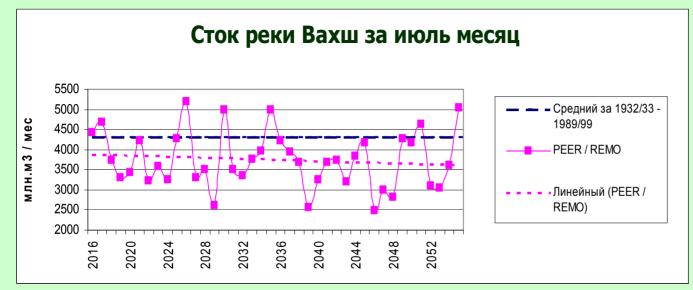


По оценкам проекта **RETA**, для участка г/п **Тюямуюн- Саманбай** при расчетах **РБ** и распределении водных ресурсов величину русловых потерь рекомендуется принимать: за период **октябрь-март** в пределах **16...20 %**, за **апрель-сентябрь** – в пределах **14...17 %**.

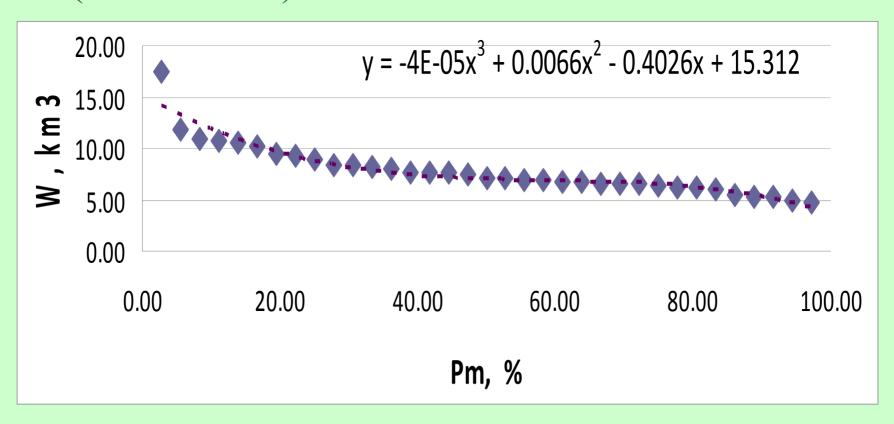

Для участка **Келиф** – **Бирата** рекомендуемые максимальные значения потерь определены в **1.5...2** %.

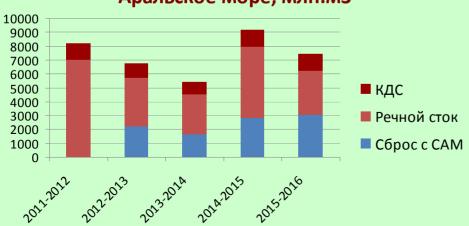


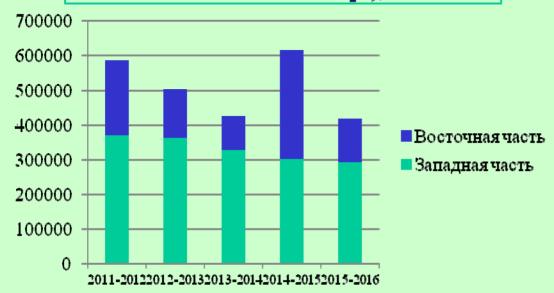
Факторы, влияющие на изменение/сокращение стока реки Амударья, млн.м3

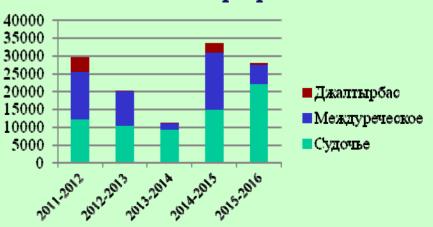

Режимы Нурекской ГЭС:	Сценарии влияния климатических изменений:				
	Нет влияния	Влияние по REMO 04-06			
Энергетический	Вариант (Case) 1	Вариант (Case) 3			
Энерго-ирригационный	Вариант (Case) 2	Вариант (Case) 4			

	2020	2025	2035	2045	2050
1.Увеличение водозабора Афганистана	0	500	1000	2000	3000
2.Водозабор Афганистана	3000	3500	4000	5000	6000
3.Уменьшение сброса КДС в Амударью с Туркменистана	200	790	1970	1970	1970
4.Снижение водности Амударьи (1+3)	200	1290	2970	3970	4970

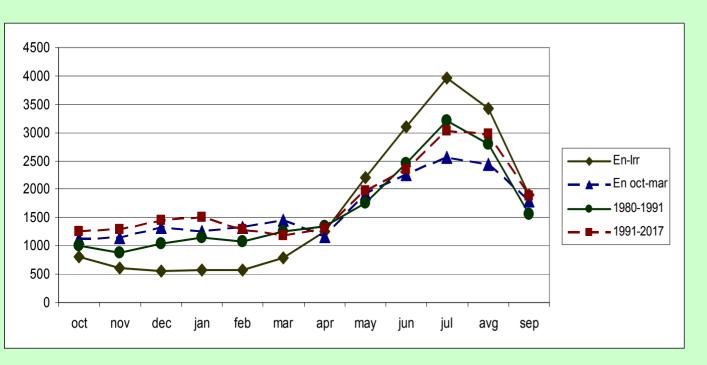



Оценка влияния климатических изменений на сток рек и построение гидрографов стока рек бассейна Амударьи на 2016—2055 гг PEER / ASBmm – REMO 0406

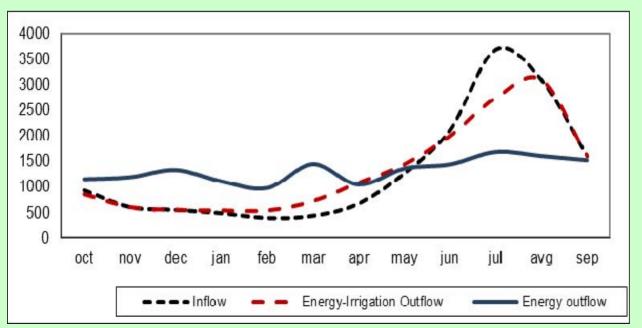

Кривая обеспеченности Рm (W) **русловых потерь** реки Амударья (2020-2055 гг)


Динамика притока воды в Большое Аральское море, млн.м3

Площади водной поверхности Большого Арала (обработка космических снимков, по состоянию на октябрь), га



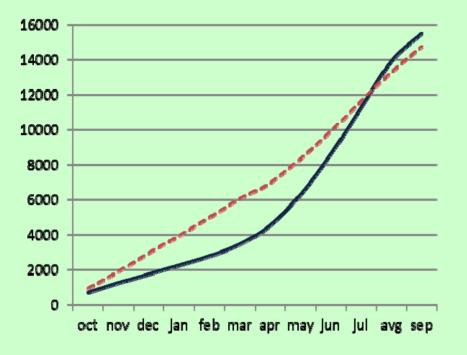
Площади водной поверхности озер Южного Приаралья



Средний за 2011-2015 гг годовой приток в Приаралье - 7.4 км3, в т.ч по реке - 4.3 км3, САМ - 2.0 км3, КДС — 1.1 км3

Площадь водной поверхности западной части Большого моря сократилась на 21 %, восточной — на 42 %. Западное море за год теряет: 50-60 см уровня воды, 1.5-2.0 км3 объема воды. Чтобы сохранить Западное море приток в Приаралье необходимо увеличить до 9-10 км3

Графики попусков воды из Нурекского г/у: энерго-ирригационный режим, энергетический Осреднение за 2020-2055 годы Средние значения за 1980-1991 и 1991-2017 гг.

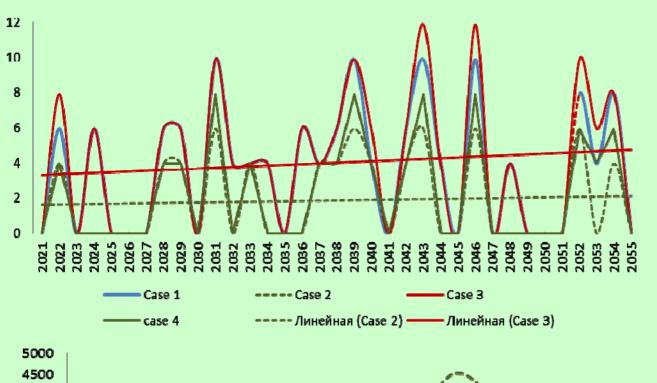

Динамика притока и попусков из Нурекской ГЭС при альтернативных режимах ее работы для маловодного года (2042-2043 г)

Внутригодовая выработка э/э на Вахшском каскаде ГЭС

без учета РогунскойГЭС), млн.кВт.ч.

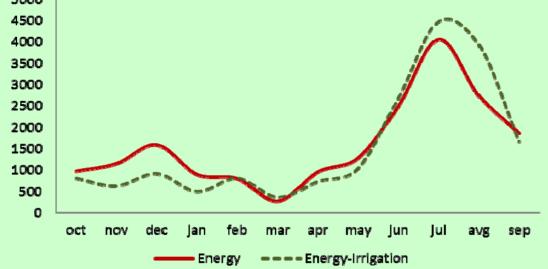
Осреднение за 2020-2055 гг.: Энергетический (case 3) Энерго-ирригационный (case 4) режимы Нурекской ГЭС

Интегральная кривая помесячной выработки э/э на Вахшском каскаде ГЭС, млн.кВт.ч


Case 3

ОЦЕНКА ВОДОПОТРЕБЛЕНИЯ

Расчетное водопотребление (требования на воду в среднем за 2020-2055 гг) находится в диапазоне современных лимитов, утверждаемых для года средней водности и маловодного года (55...50 км3 в год). Сценарии: **FSD** – обеспечение продовольственной безопасности, **ESA** – ориентация на экспорт


	FSD	ESA	ESA-FSD
Верхнее течение	9612	9041	-571
Среднее течение	24426	24383	-43
Нижнее течение	17137	16788	-349
ВСЕГО	51175	50212	-963
Таджикистан	8269	7712	-557
Туркменистан	21725	21586	-139
Узбекистан	21181	20913	-267

Требуемая подача воды в ЗП из трансграничных источников по сценариям - осреднение за период 2020-2055 гг (без учета требований Афганистана), млн.м³/год

Динамика дефицита воды в бассейне Амударьи за апрель-сентябрь 2020-2055 гг, км3.

Case 1 — энергетич. режим без учета влияния климата Case 2 — энерго-ирр. режим без учета влияния климата Case 2, 3 — тоже, с учетом влияния климата

Гидрограф стока реки Амударья в створе г/п Бирата (приток к ТМГУ) для особо маловодного года (2042-2043 г), млн.м3 / мес

	-	3. Shepren		Бариант 4. Энерго-энерг режим				
Страны бассейна,	режим	Нурекской	ГЭС +	Нурекской ГЭС + влияние				
участки	влі	ияние клима	ата		климата			
y ide ikii	октябрь-	апрель-	год	октябрь-	апрель-	год		
	март	сентябрь	ТОД	март	сентябрь	ТОД		
1.Верхнее течение	0.00	2.39	2.39	0.49	1.60	2.09		
1.1.Таджикистан	0.00	2.03	2.03	0.44	1.36	1.79		
1.2 Узбекистан	0.00	0.36	0.36	0.06	0.24	0.30		
2.Среднее течение	0.00	4.86	4.86	1.25	3.24	4.49		
2.1.Туркменистан	0.00	3.14	3.14	0.77	2.09	2.86		
2.2 Узбекистан	0.00	1.72	1.72	0.49	1.15	1.63		
3. Нижнее течение	0.00	4.60	4.60	0.62	3.06	3.69		
3.1.Туркменистан	0.00	1.51	1.51	0.21	1.01	1.22		
4.2 Узбекистан	0.00	3.08	3.08	0.41	2.06	2.47		
ВСЕГО	0.00	11.85	11.85	2.36	7.90	10.26		
Таджикистан	0.00	2.03	2.03	0.44	1.36	1.79		
Туркменистан	0.00	4.65	4.65	0.98	3.10	4.08		
Узбекистан	0.00	5.16	5.16	0.95	3.44	4.39		

Вапиант 4 Энепго-энепг пежим

Вапиант 3 Энепгетический

Водозабор и дефицит воды маловодного 2042-2043 г

Статья	режим	3. Энерге Нурекской ияние клим	í ГЭС +	Вариант 4. Энерго-энерг режим Нурекской ГЭС + влияние климата		
баланса	баланса октябрь- карт выплание климата апрель- сентябр год в	год	октябрь- март	апрель- сентябрь	год	
Лимиты, км3	15.75	39.49	55.24	15.75	39.49	55.24
Водозабор	15.75	27.64	43.39	13.39	31.59	44.98
в % от лимита	100	70	79	85	80	81
Дефицит, км3	0.00	11.85	11.85	2.36	7.90	10.26
в % от лимита	0	30	21	15	20	19

Распределение дефицита воды, поступающей в каналы бассейна Амударьи, маловодный 2042-2043 гг, км³

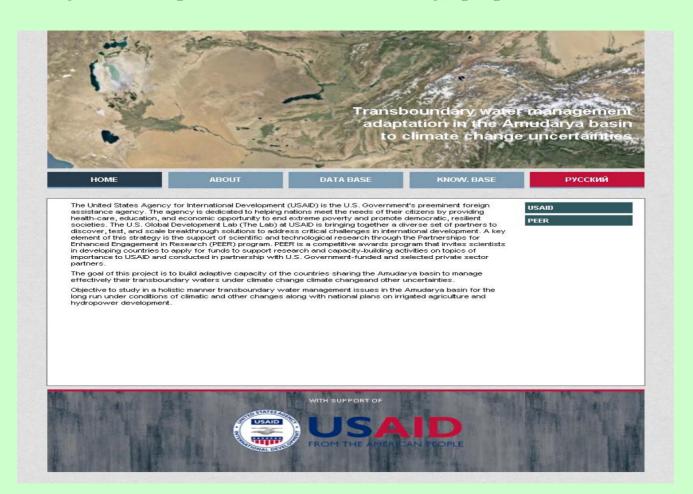
Количество случаев (К) из 100 появления дефицита воды (D, %) при различных вариантах

различных вариантах								
(саse) Вари- Дефицит D, в % от лимита								
анты	10%	15%	20%	25%	30%			
Case 1	23	20	6	11	0			
Case 2	26	14	0	0	0			
Case 3	17	23	6	9	6			
Case 4	26	6	11	0	0			

20,000	Продуктивность воды, \$/м3							
Зоны	BAU			FSD		ESA		
планирования	2015	2020	2055	2020	2055	2020	2055	
Карши	0.22	0.15	0.17	0.18	0.42	0.20	0.57	
Сурхандарья	0.32	0.22	0.24	0.24	0.62	0.26	0.80	
Хорезм	0.13	0.19	0.19	0.21	0.39	0.21	0.55	
Юж.Каракалпакстан	0.09	0.12	0.14	0.14	0.30	0.15	0.40	
Сев.Каракалпакстан	0.09	0.13	0.18	0.16	0.28	0.16	0.37	
Вахш	0.12	0.12	0.17	0.15	0.27	0.17	0.41	
Пяндж	0.09	0.16	0.18	0.16	0.30	0.17	0.45	
Н.Кафирниган	0.09	0.15	0.15	0.17	0.25	0.19	0.35	
Ахал	0.23	0.17	0.23	0.20	0.60	0.21	0.78	
Мари	0.19	0.14	0.19	0.16	0.41	0.16	0.49	
Лебап	0.18	0.14	0.19	0.16	0.45	0.16	0.53	
Дашауз	0.12	0.10	0.10	0.12	0.26	0.13	0.41	

Продуктивность оросительной воды, подаваемой в ЗП бассейна Амударьи по сценариям - результаты расчета на модели зоны планирования PZm

Зоны	Продуктивность земли, \$/га							
планирования	BAU			FSD		ESA		
планирования	2015	2020	2055	2020	2055	2020	2055	
Карши	1335	1054	1205	1310	3106	1402	4208	
Сурхандарья	2451	1850	1687	2088	4409	2231	5701	
Хорезм	1398	1952	2165	2172	4502	2202	6238	
Юж.Каракалпакста								
Н	1036	1366	1631	1542	3579	1608	4533	
Сев.Каракалпакста								
Н	990	1502	2266	1825	3587	1907	4679	
Вахш	291	2170	2731	2545	4572	2808	6308	
Пяндж	1071	1279	1458	1310	2469	1404	3608	
Н.Кафирниган	1044	2214	2421	2672	4344	2940	5673	
Ахал	705	955	1161	1076	2949	1131	3845	
Мари	1125	1150	1362	1274	3470	1307	4191	
Лебап	1114	860	1090	951	2594	977	3169	
Дашауз	1110	774	776	974	2559	1003	3875	


Продуктивность орошаемых земель ЗП бассейна Амударьи по сценариям - результаты расчета на модели зоны планирования PZm

Рекомендации по адаптации

- 1. Уточнение норм водопотребления, режимов орошения с/х культур,
- **2.**Оптимизация состава с/х культур от сценария ВАU к сценариям FSD и ESA + внедрение инноваций; результат: водосбережение и рост продуктивности оросительной воды (\$/m3) от 0.08...0.16 (2015 г) до 0.33 (FSD), 0.41 (ESA) в 2020-2050 гг; рост продуктивности 1 га орошаемой площади (тыс.\$) от 1...1.3 (2015 г) до 7.7 (ESA, 2020-2055 гг),
- **3.** <u>Уточнение</u> современного <u>режима работы Нурекской ГЭС</u>; результат: ликвидация холостых сбросов и потерь вырабатываемой э/э,
- **4.**Переход с энергетического на энерго-ирригационный режим работы Нурекской ГЭС + организация сезонных потоков э/э между странами в пределах единого энергетического рынка; результат: увеличение годовой выработки э/э на 5 %, ликвидация дефицита зимней э/э и снижение/ликвидация дефицита воды в орошении, адаптация к изменениям стока реки Вахш, вызванным изменением климата

- **5.**Снижение русловых потерь Амударьи посредством организации совместного водоучета, <u>улучшения прогнозирования стока и</u> оперативного управления водными ресурсами; контроль за русловыми потерями,
- **6.**Переход на <u>гидроэкологическое управление</u> усиление контроля не только за водозаборами, а также за санитарными и экологическими попусками
- **7.**Разработка и согласование <u>правил</u> многолетнего <u>регулирования</u> <u>стока</u> крупных водохранилищных гидроузлов с ГЭС, распределения регулирующих функций между речными (русловыми, наливными) и внутрисистемными водохранилищами,
- 8. Уточнение схем комплексного использования и охраны водных ресурсов бассейна, увязывающих национальные требования в бассейне, включая <u>оценку и меры по адаптации к изменению климата</u>,
- **9.**Совершенствование механизмов и инструментов обмена данными (включая аналитическую информацию) на межгосударственном уровне для ключевых ведомств и организаций, определяющих политику/ стратегию развития региона и управление водными ресурсами

В рамках проекта разработана **компьютерная модель** расчета водопотребления областей стран бассейна – PZm ASBmm, что позволило оценить влияние климата во взаимодействии с различными сценариями водохозяйственного, аграрного, экологического и энергетического развития стран бассейна. Модель создана в соответствии с требованиями семейства методологий моделирования сложных систем IDEF (Integrated Computer-Aided Manufacturing), разработанной в США.

Доступ к модели зоны планирования пакета ASBmm (модель управления водными ресурсами бассейна Аральского моря)

http://cawater-info.net/pzm/basic/web

БД с исходной информацией и результатами проекта (оценка сценариев на 2020-2055 гг по секторам и индикаторам) расположена на сервере НИЦ МКВК и доступна в интернете по адресу http://cawater-info.net/peer/

СПАСИБО ЗА ВНИМАНИЕ

sag.sic.icwc@gmail.com