Расчеты прогноза водно-солевого режима орошаемых земель с помощью модели Средазгипроводхлопка-ЦНИИКИВР на основе экспериментальных данных по Хорезмской области

Ю.И. Широкова¹, Г. Палуашова², А.Н. Морозов³

¹ Научно-исследовательский институт ирригации и водных проблем, Узбекистан

²ОАО Гидропроект, Узбекистан

В низовьях р. Амударьи (территории Республики Каракалпакстан и природных условий вследствие сложных проблем с использованием водных ресурсов наблюдается постепенная деградация орошаемых земель, заключающаяся в стабильном сезонном засолении, а в Хорезме - и в частичном заболачивании. Это отражается и на продуктивности земель, так урожаи в Хорезме снизились до 20-25 ц/га, а в РК уже более 10 лет получают стабильно низкие урожаи хлопка, не превышающие 16 ц/га. Наихудшее положение по заболачиванию территории наблюдается в Хорезмской области, где даже осенью грунтовые воды располагаются очень близко к поверхности земли. Несмотря на то, что грунтовые воды в основном имеют минерализацию менее 3 г/л, при сельскохозяйственном использовании, происходит засоление орошаемых земель.

Ситуацию в Хорезме можно назвать критической: площади орошаемых земель с глубиной грунтовых вод менее 1,5 метров превышают 80 % от орошаемых земель. В Каракалпакии ситуация несколько лучше: земли с близкими грунтовыми водами, занимают чуть более 20 %.

Парадоксальным является и тот факт, что в условиях создавшейся по сути субиррригации, снижение завышенных водозаборов неизбежно приводит с усилению процессов засоления, так как к растениям вода к растениям поступает снизу, в то время, как орошение в условиях засоление требует промывного режима орошения.

На основе данных фактических наблюдений за элементами водносолевого баланса на опытных участках в Ханкинском и Хивинском районах Хорезмской области, было проведено тестирование модели Средазгипроводхлопка-ЦНИИКИВР¹.

Принцип модели основан на управлении водно-солевым режимом при контролировании полного потенциала почвенной влаги (суммарного = матричного +осмотического давления).

_

¹ Подробно об этой модели см. на сайте: water-salt. narod.ru/met_wsr.htm

Данная модель позволяет рассчитывать водно-солевой режим, почвы при любых заданных условиях.

Имея все составляющие водного баланса, для моделирования были выбраны 3 режима тестирования модели:

- 1. С использованием фактических данных о сроках и нормах промывок и поливов.
- 2. По критическому режиму поддержания влаги и солей в почвенном растворе, заданному для хлопчатника на уровне суммарного давления почвенной влаги (матричного +осмотического давления) 4-6 атм.
- 3. По критическому режиму поддержания влаги и солей в почвенном растворе, при увеличенной дренированности участка, путем снижения напорности грунтовых вод на 0,5 м

Для нормального развития растений имеет значение не только количество влаги в почве, но и её минерализация. Учеными отмечалось, что в условиях засоления почв физиологическая засуха наступает быстрее, и, рекомендовалось поддерживать влажность на уровне 80 % от ППВ (Рыжов, 1965). На засоленных почвах, режим поливов должен назначаться с учетом концентрации солей в почвенном растворе, так как при снижении влажности почвы у растений возникает солевой стресс. Доступность влаги растениям в засоленной почве определяется её влажностью (матричное давление или сосущая сила почвы) и засолением (осмотическое давление почвенного раствора). Для обеспечения себя влагой растение в засоленной почве должно преодолеть эти две силы. Суммарное отрицательное давление в почве складывается из матричного и осмотического Рм + Ψ осм. ² Для создания оптимального мелиоративного режима необходимо обеспечивать в корнеобитаемом слое почв такой режим влажности, при котором суммарное давление в почве в начальную фазу развития не превышает критической величины (4 атм.) и 5, 6 атмосфер в стадию цветения - плодообразования. Осмотическое давление можно легко определить, когда концентрация почвенного раствора выражена через электрическую проводимость, а для измерения матричного давления, используется зависимость давления от влажности, (гидрофизическая характеристика - р кривая).

В условиях не высокой степени засоления можно получить хороший урожай, если регулировать водно-солевой режим почвы своевременными (более частыми) поливами, не дожидаясь стресса растений.

.

² Засоление почв происходит в результате накопления солей при капиллярном поднятии солоноватых и соленых вод. Высокое содержание солей в почвенном растворе препятствует поступлению в растения питательных элементов. Создается так называемое осмотическое давление, которое в почвенном растворе выше, чем в клетках растений и из них как бы отсасывается раствор, создается физиологическая засуха, и растения могут погибнуть.

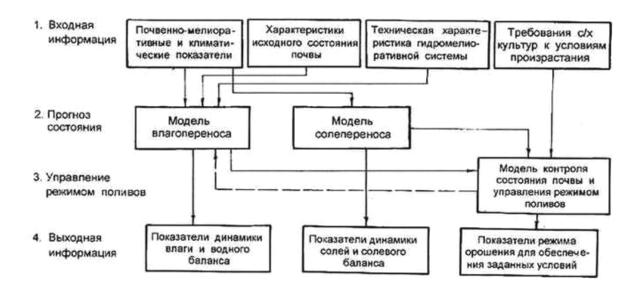


Рис. 1. Блок-схема моделирования состояния водно-солевого режима (ВСР) почвы и управления режимом поливов

Имитационная модель влаго- и солепереноса в почве основанная на исследованиях Л.М. Рекса, И.П. Айдарова, А.И. Голованова [1-3] и других авторов, подробно описана в работе В.А. Злотника и А.Н. Морозова (1983) [4, 7].

В модели использованы два взаимосвязанных блока:

- водного режима, прогнозирующего влажность и скорость фильтрации;
- солевого режима, прогнозирующего солеперенос.

Для использования математической модели формирования водно-солевого баланса, требуется информация, получаемая чаще всего на поле, путем экспериментальных исследований, как правило, помимо собственно составляющих баланса, требуется много дополнительных параметров [7]. От этого зависит качество (достоверность) прогнозов.

Таблица 1 Исходные данные по опытным участкам, используемые для тестирования модели ВСР

Код точки	Горизонт , см	Засоление, dS/m		Влажность	ППВ,	Объемная	Минерализаци я, г/л		Урожа й	
		EC _{1:1} ,	ECe	, % к массе	% от объема	μacca, $μ$ /c $μ$ ³	грунт. вод	орос. воды	хлопка, ц/га	
Ханкинский участок - Встречный полив -18.05.2005 г.										
3 E	20	0,92	3,22	14,0	25,3	1,48	2,9	0,91	74,1	
	40	1	3,5	18,6	31,4	1,53				
	60	0,99	3,47	21,7	36,6	1,58				
	80	0,62	2,17	23,4	37,3	1,51				
	100	0,61	2,14	26,1	30,6	1,51				
4 E	20	2	7	14,4		1,47			45,2	
	40	1,8	6,4	21,2		1,5				
	60	3	10,6	24,4		1,52				
	80	1,3	4,7	30,5		1,51				
	100	1	3,5	27,1		1,4				
Ханкинский участок - Обычный полив - 18.05.2005 г.										
	20	2,57	9	18,0	29,1	1,49	3	0,91	59,4	
	40	1,38	4,8	18,3	29,1	1,51				
3 K	60	2,48	8,7	22,6	33,2	1,47				
	80	0,88	3,1	27,1	27,9	1,55				
	100	0,8	2,8	27,3	37,6	1,59				
8 K	20	3,08	10,8	15,4	32,0	1,59			39,9	
	40	3,16	11,1	23,5	33,8	1,64				
	60	3,1	10,9	26,3	30,0	1,57				
	80	2,88	10,1	25,0	24,1	1,67				
	100	3,03	10,6	25,5	24,2	1,51				
			Хива	27.04.06 г. По	пив в каж,	дую борозду				
3к.б	20	0,86	3,0	8,9	20,2	1,44	1	1,78		
	40	1,18	4,1	13,5	23,0	1,54				
	60	0,61	2,1	13,4	23,0	1,57				
	80	0,61	2,1	17,9	17,5	1,48				
	100	0,54	1,9	19,2	18,2	1,51				
Хива 27.04.06 г. Полив через борозду										
3ч/б	20	0,57	2,0	11,6	21,6	1,42	1,15	2,1		
	40	0,27	1,0	13,4	22,3	1,57				
	60	0,26	0,9	15,7	22,0	1,58				
	80	0,29	1,0	18,1	18,3	1,51				
	100	0,36	1,3	20,7	24,2	1,56		0,36	1,26	

Исходные данные для расчета

- глубина заложения дрены, м;
- мощность дренируемого горизонта, м;
- коэффициент фильтрации, м/сут;

- порозность; влажность завядания; предельная полевая влагоемкость; влажность прекращения испарения;
- коэффициент фильтрации прослоя, м/сут;
- мощность прослоя, м.;
- напор подстилающего горизонта, м;
- уровень грунтовых вод, м.;
- коэффициент дренируемости, м/сут
- минерализация вод напорного горизонта, г/л;
- коэффициент молекулярной диффузии, коэффициент дисперсии;
- эпюра начальной минерализации: минерализация почвенного раствора, г/л по горизонтам;
- дата начала и дата окончания вегетационных поливов, сут;
- норма вегетационных поливов, мм;
- минерализация поливной воды, г/л.

Таблица 2 Данные основных гидрофизических характеристик почв на опытных участках

Давление	Соотрататруют	pF, см водного столба	Ханкинский	Хива	
почвенной	Соответствует формам влаги в		Контроль	Опыт	Лива
влаги, кПа	почве		Объемная влажность, % при давлениях pF		
1	Порозность (П)	0	42,3	42,9	43,0
4		1,7	34,9	37,6	24,6
10	Наименьшая влагоемкость (НВ)	2,1	31,0	34,4	22,2
32		2,7	27,1	30,1	18,9
100		3,0	23,5	26,9	16,0
316	Влажность завядания (ВЗ)	3,5	20,4	23,8	12,9
1580		4,2	16,2	18,9	8,6
1000000		7	0,0	0	0
		Объемн	ная масса, г/см ³		
			1,54	1,54	1,51

р F-десятичный логарифм давления почвенной влаги

Также были использованы климатические данные по метеостанции на поле и данные основной гидрофизической характеристики почв (зависимость изменения давления почвенной влаги от изменения влажности почвы).

Результаты моделирования представлены на рисунках 2-4.

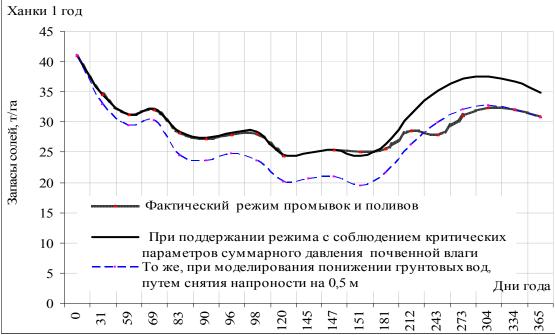
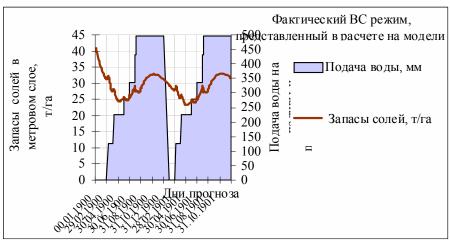
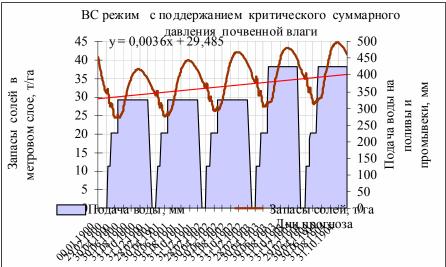




Рис. 2. Результаты моделирования: изменение содержания солей в почве (т/га) в течение года при поддержании различных режимов

А - Ханкинский участок; Б - Хивинский участок

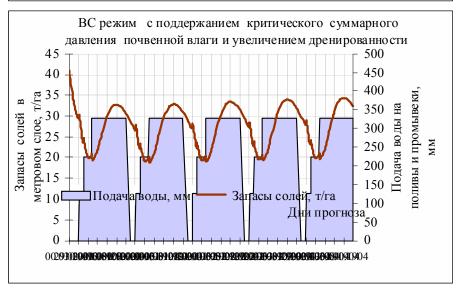
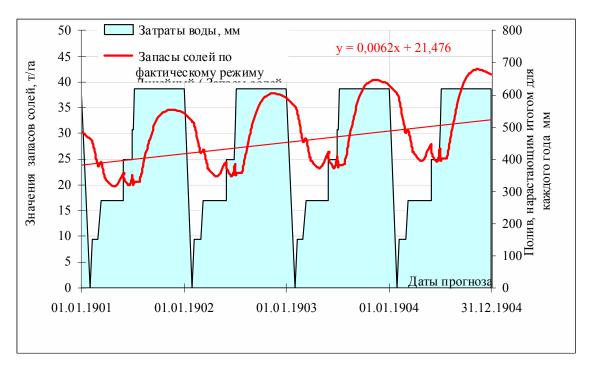



Рис. 3. Результаты моделирования: сопоставление затрат воды и запасов солей в почве при фактическом, критическом водно-солевом режиме и при критическом при увеличении дренированности на Ханкинском участке

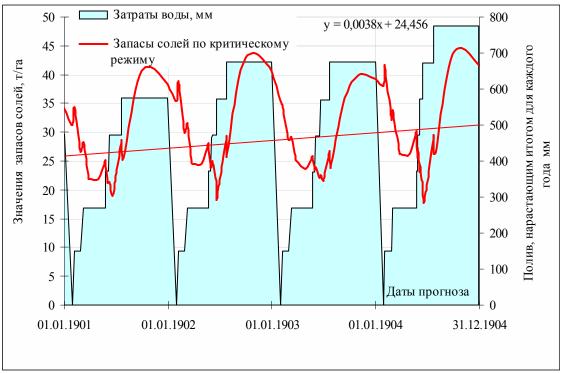


Рис. 4.Результаты моделирования: сопоставление затрат воды и запасов солей в почве при фактическом и критическом водно-солевом режиме на Хивинском участке

Выволы:

Результаты моделирования водно-солевого режима почв, с помощью принятой модели Средазгипроводхлопка—ЦНИИКИВР, позволили выявить следующее.

- Расчет прогноза на модели (для Ханкинского и Хивинского участков) показал, что изменение содержания солей в почве (т/га) в течение года, при фактическом управлении ВСР, довольно близко к режиму, соответствующему управлению по критическому режиму. При этом при фактическом режиме поливов соленакопление от весны к осени даже меньше, что свидетельствует о том, что в расчете на модели, возможно, была занижена дренированность.
- Сопоставление затрат воды и запасов солей в почве при фактическом и критическом водно-солевом режиме на обоих участках показало, что в многолетнем цикле управление по критическому режиму более эффективно, так как приводит к меньшему соленакоплению и меньшим затратам воды, по сравнению с фактическим управлением.

При увеличении глубины грунтовых вод (путем снижения напорности на 0,5 м) выявлено, что:

- а. для условий участка в Ханкинском районе, где засоление почвы более высокое, прослеживается заметное снижение соленакопления от весны к осени, как в годовом, так и в пятилетнем цикле.
- b. для условий участка в Хивинском районе, где засоление относительно невысокое и более обеспеченный отток поливных и промывных вод дренажом, увеличение дренированности в расчете -не показало существенных изменений.
- В целом установлено, что данная модель реально работает и позволяет выполнять предварительные прогнозы, при не слишком большом наборе исходных данных. После уточнения выводов, можно рекомендовать проводить подобные расчеты при принятии решения о реконструкции дренажных систем на отдельных массивах.
- При согласовании с основным автором модели, её целесообразно зарегистрировать и распространить среди заинтересованных специалистов, составить обновленную версию пошагового руководства пользователя, а также провести разъяснение модели, путем специального обучения.
- Модель можно использовать и в учебных целях, чтобы бакалавры и магистры, могли на практических занятиях усвоить основы водносолевого баланса, и то, как влияет управление водой на солевой режим почвы.

Литература

- 1. Голованов А.И.. Прогноз водно-солевого режима и расчет дренажа на орошаемых массивах. Автореф. дисс. на соискание уч. степени д.т.н., М., МГМИ, 1975, 32 с.
- 2. Рекс Л.М. Прогноз переноса солей // Гидротехника и мелиорация. 1972. № 10.
- 3. Рекс Л.М, Якиревич А.М. Методы расчета водно-солевого режима почв и дренажа на орошаемых землях. Материалы IV Всесоюзного совещания по мелиоративной гидрогеологии, инженерной геологии и мелиоративному почвоведению. (Ашхабад, 1980). М., 1981 с 98-108
- 4. Злотник В.А., Морозов А.Н. Опыт расчета режимов орошения минерализованными водами. Гидротехника и мелиорация, 1983, N10, c.62-65.
- 5. Мелиоративные системы и сооружения. Дренаж на орошаемых землях нормы проектирования ВСН 33-2.2.03-86, Министерство Мелиорации и Водного Хозяйства СССР, Москва 1987 (разработаны: В/О «СОЮЗВОДПРОЕКТ» совместно с институтом гидромеханики. АН УССР, МГМИ, ВНИИГИМОМ, САНИИРИ, Укргипроводхозом, Средазгипроводхлопком и Калининским политехническим институтом).
- 6. Серебренников Ф.В. Анализ гидрофизических функций в приложении к прогнозам влагопереноса в почвах // Московский государственный университет природообустройства. Материалы международной научно-практической конференции «Роль природообустройства сельских территорий в обеспечении устойчивого развития АПК», Москва 2007
- 7. Морозов А.Н. Методика прогноза водно-солевого режима. http://water-salt.narod.ru/met wsr.htm/.